\qquad $S:$

Nor 1-18, Match the vocabulary word with its definition. Each word will be used once.

1. Center

2. Radius

3. Diameter
4. Chord
5. Secant
6. Tangent Line

7. Point of Tangency
8. Minor Arc

9. Major Arc

10. Semi-circle

11. Arc
12. Congruent Arcs
13. Central Angle
N
14. Circle
A. segment between two points on the circle whose
midpoint is the center.
b. a line that touches or intersects the circle at exactly
one point.

D. a segment between the center and a point on the
\& circle. P. the point of intersection of a tangent.
pa point that has an equal distance from each point
on the circle.
G. a segment between two points on the circle

म. part of a circle that measures less than 180°
fan angle whose vertex is the center of the circle and whose sides are radii of the circle.
A. part of a circle that measures more than 180°

1. an arc of a circle that equals 180°.
f. two or more arcs that have the same measure.
2. an unbroken part of a circle
3. a set of points in a plane that have an equal distance from a given point.

For 15-21, Using the diagram, match the notation with the term that BEST describes it.

For 22-28, Use Circle M below to find the measures of each arc or angle.
In cjrcle $M, m \not \subset B M C=40^{\circ}, m \overline{\boxed{ }} C M D=90^{\circ}, \overline{A C}$ and $\overline{B E}$ are divineters.

ARCS AND CENTRAL ANGLES OF A CIRCLE

EQ: What is the relationship between major ares, minor ares and central angles of a circle?

- An arc is an unbroken part of a circle. There are neveral ares and angles of a circle that are of interest to us.

Read each of the questions below. How can you respond to the questions using the mentioned circle parts and the given visual?

- A Cental angle of a circle is an angle whose vertex is the center of the circle and whose sides are radii of the circle. Which mentioned part is a central ansle? $\angle C B A, \angle D B A, \angle E B D, \angle E B C$
- Minor arc is part of a circle that measures less than 180°. Which two mentioned parts are minor ancs? $\overparen{A C}, \triangle A, \widehat{D D}, \widehat{E C}$
$>$ A Semiarele is an arc of a circle that equals 180°. Which mentioned part is a semicircle? DAC ,DEC

> A major anc is part of a circle thatneasures more than 180°. Which mentioned part is a major anc? DCE, CEA
\rightarrow Congment ancs are two or more arcs that have the same measure. Which $\overparen{\text { pair of mentioned parts are congruent arcs? } \triangle \text { DA }, C A \text { or } \triangle A C C}$

Given Arc	Minor Arc	Major Arc	Semicircle	
1	$\overparen{\mathrm{AE}}$			
2	$\overparen{\mathrm{AEB}}$			
3	$\overparen{\mathrm{FE}}$			
4	$\overparen{\mathrm{DFB}}$			
5	$\overparen{\overparen{\mathrm{BDF}}}$			
6	$\overparen{\mathrm{FB}}$			

[^0]路 tolp us find the measure of each arc? this information to help given arc,
$1 \quad \mathrm{Example} \overrightarrow{\mathrm{QR}}=70^{\circ}$.

1	$m \overparen{Q R}=70^{\circ}{ }^{\circ}$
2	$m \overparen{\mathrm{NMR}}=180^{\circ}$
3	$m \overparen{M R}=110$
4	$m \overparen{M R P}=250$.
4	$m \overrightarrow{N P}=80$
5	$m \mathrm{NP}=-250$
6	$m \mathrm{RQM}=$
7	$m \widehat{P R N}=280^{\circ}$
8	$m \widehat{\mathrm{QMR}}=290^{\circ}$

\#1-18, how do we justify the measures of each requested arc?

YOUR TURN

2.

$m \overparen{\mathrm{BE}}=100 . \mathrm{m}_{\overparen{\mathrm{AB}}}=90 . \quad m \overparen{\mathrm{BE}}=80$ $m \widehat{\mathrm{ABE}}=190^{\circ}{ }^{\circ} \overrightarrow{\mathrm{ABD}}=260^{\circ}$ 7.

120
360
$1200^{-\frac{-120}{240 / 2}}$
8.

$m \widehat{F T}=120$ -
$m \overparen{\mathrm{RHT}}=190$

$$
m \overparen{\mathrm{FT}}=\frac{115}{}
$$

$$
m \overparen{\mathrm{RFT}}=170 \quad \therefore \widehat{\mathrm{TRF}}=240
$$

9.

INSCRIBED ANGLES OF A CIRCLE

[^0]: How many degrees is a circle? 3600 How many degrees

