Area of Clique Triangles

Two ways to find the Area of a triangle:

1. $K=\frac{1}{2} a b \sin C \quad$ Given 2 sides and 1 angle - all letters different; $a, b=$ sides, $C=$ angle

Example: Find the area: $a=6.8 \mathrm{in}, \mathrm{b}=16 \mathrm{in}, \mathrm{C}=111^{\circ}$

$$
K=\frac{1}{2}(6.8)(16) \sin 111=50.8 \mathrm{in}^{2}
$$

2. Heron's Area Formula - Given 3 sides of the triangle The area of a triangle with sides of length a, b, and c is

$$
K=\sqrt{s(s-a)(s-b)(s-c)}
$$

Where $s=\frac{1}{2}(a+b+c)$. The variable s is called the semiperimeter, or half-perimeter, of the triangle
Example: Find the area of the triangle to the right (nearest tenth).
(1) $S=\frac{1}{2}(6.6+9+7)=11.3$
(2)

$$
\begin{aligned}
& \sqrt{11.3(11.3-6.6)(11.3-7)(11.3-9)} \\
& A=22.9 \mathrm{ft}^{2}
\end{aligned}
$$

Examples. Your Turn. Find the area of the triangle to the nearest tenth (show work).

1. In $\triangle A B C, a=14, b=12, c=9$
(1) $S=\frac{1}{2}(14+12+9)=17.5$
(2) $\sqrt{17.5(17.5-14)(17.5-12)(17.5-9)}$

$$
=53.5 \text { units }^{2}
$$

