Area of Oblique Triangles

Two ways to find the Area of a triangle:

1. $K=\frac{1}{2} a b \sin C$ Given 2 sides and 1 angle - all letters different; $\boldsymbol{a}, \boldsymbol{b}=$ sides, $\boldsymbol{C}=$ angle

Example: Find the area: $a=6.8 \mathrm{in}, \mathrm{b}=16 \mathrm{in}, \mathrm{C}=111^{\circ}$

2. Heron's Area Formula - Given 3 sides of the triangle

The area of a triangle with sides of length a, b, and c is

$$
K=\sqrt{s(s-a)(s-b)(s-c)}
$$

Where $s=\frac{1}{2}(a+b+c)$. The variable s is called the semiperimeter, or half-perimeter, of the triangle
Example: Find the area of the triangle to the right (nearest tenth).

Examples. Your Turn. Find the area of the triangle to the nearest tenth (show work).

1. In $\triangle A B C, a=14, b=12, c=9$
2. In $\triangle A B C, a=8, b=17, m \angle C=82^{\circ}$
