Area of Oblique Triangles

Two ways to find the Area of a triangle:

1. $K = \frac{1}{2}ab \sin C$ Given 2 sides and 1 angle – all letters different; a, b = sides, C = angle

Example: Find the area: a = 6.8 in, b = 16 in, $C = 111^{\circ}$

2. Heron's Area Formula - Given 3 sides of the triangle

The area of a triangle with sides of length *a*, *b*, and *c* is

$$K = \sqrt{s(s-a)(s-b)(s-c)}$$

Where $s = \frac{1}{2}(a+b+c)$. The variable *s* is called the *semiperimeter*, or half-perimeter, of the triangle

Example: Find the area of the triangle to the right (nearest tenth).

Examples. Your Turn. Find the area of the triangle to the nearest tenth (show work).

1. In $\triangle ABC$, $a = 14$, $b = 12$, $c = 9$	2. In Δ <i>ABC, a</i> = 8, <i>b</i> = 17, <i>m</i> ∠ <i>C</i> = 82°