COSE Algebra 1 2/15/19 Unit 28 - Linear Functions KINGERIC FARMOR Ex: 5, 10, 15, 20, 25, ... 0=0, -0. Sequence: a pattern of MUMhUS an Anthren's Sprences: A sequence of terms that have a common An WALL Secures them. Explicit Formula: $a_n = q_1 + d(n-1)$ where d is the COMMANN A Receipt and aris the forst form Recursive Formula: $a_1 = -a_n = a_{n-1} \pm d$ For each arithmetic sequence, find the common difference and the next three terms. 6, 12, 18, 24, ... d. _V 1. Next three terms: ______ 30.36.43 3, 8, 13, 18, ... d: 5 Next three terms: 23, 28, 39 2 For the following arithmetic sequences, find ao and d and state recursive and explicit formula. -10, -4, 2, 8, 14, ... 3 a1= -10 d= 0 Recursive: Explicit Formula: an = - C + - C a = -10 an=-10 ton-0 a stant a an=an-1+6 36, 31, 26, 21, ... $a_1 = 36 \quad d = -5$ Recursive: Explicit Formula: an = a.= 36 $a_{n} = a_{n} - 1 - 5$ $a_1 = \underline{4} \qquad d = \underline{-1}$ Explicit Formula: $a_n = \underline{-1}$ 4, -3, -10, -17, ... 5. Recursive: a,=4 a_=a_-1-7 6. Write the explicit formula for the sequence, then find the 10th term 7, 10, 13, 16, ... $a_1 = 1 d = 3$ Explicit formula: $a_n = 1+3(n-1)$ 910=7+3(10-1) 7. Write the explicit formula for the sequence, then find the 51st term. $a_1 = 7; d = -4.7$ Explicit formula: $a_n = 7 - 4, 7 (n-1)$ asi= 0019

931=7-4.7(51-1)

GSE Algebra I

Practik

Name: _____

Date:

Write the explicit formula and recursive formula for each arithmetic sequences	
1. 5, 7, 9, 11, 13,	2 -4 -5 -6 -7 9
d = D	2. 4, -0, -0, -7, -8,
a = 5	
	$a_1 = \underline{-4}$
$Explicit: a_n = 5 + d(N-1)$	Explicit: $a_n = -4 - 1(n-1)$
Recursive: 91-3 an=an-1+2	Recursive: 9, 5-4
3. 10, 15, 20, 25,	1 0 0 5 10 10
d= 5	49, -2, 5, 12, 19,
	d =
$a_1 = \underline{10}$	$a_1 = -9$
Explicit: $a_n = 10 + 5(n-1)$	Explicit: $a_n = -Q + T(n-1)$
Recursive: $a_n = a_{n-1}$	Recursive: an=an-1
5. 23, 20, 17, 14,	6. 8, 6.5, 5, 3.5, 2,
d = -3	d = -1.5
a = 22	a 8
Explicit: $a_n = 33 - 3(n-1)$	Explicit: $a_n = 8 - 1.5(n-1)$
Pecursive: Quezan=1	
	Recursive: an i

Find the nth term for each arithmetic sequence (hint: write the explicit formula first!): 7. $a_1 = -5$, d = 4, n = 9

 $a_n = -5 + 4(9 - 1)$ $a_p = 27$ $a_{15} = 293$ **8.** $a_1 = 300, d = -1/2, n = 15$ $a_n = 300 - 1(2(15 - 1))$