Circles

- A circle is a set of points that are equidistant from the Center
- The segment that goes from the center to a point on the circle is called the
\qquad
- The segment that goes from one point on the circle to another point on the circle and crosses over the center is call the diameter.
Distance formula:

$$
\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

Example of when you might use this:

Find the distance between $(3,-4)$ and $(-2,-6)^{2}$

$\sqrt{(-6+4)^{2}+(-2-3)^{2}}$	$=\sqrt{(-2)^{2}+(-5)^{2}}$
$\sqrt{29}$	

Standard form of a circle:

$$
(x-h)^{2}+(y-k)^{2}=r^{2}
$$

Center: (h, k)
Radius: $\sqrt{1^{2}}=r$
Graphing:

$$
(x-2)^{2}+(y+5)^{2}=25
$$

Center: $(2,-5)$

Radius: $\sqrt{25}=5$
 $(2,4)$ and a point on the circle is $(3,-5)$.

$$
\begin{gathered}
(x-h)^{2}+(y-k)^{2}=r^{2} \\
(3-2)^{2}+(-5-4)^{2}=r^{2} \\
(1)^{2}+(-9)^{2}=r^{2} \\
82=r^{2} \\
(x-2)^{2}+(y-4)^{2}=82
\end{gathered}
$$

$$
(x+2)^{2}+y^{2}=9
$$

Center: $(-2,0)$
Radius: $\sqrt{9}=3$

Write the equation of a circle that has endpoints of the diameter of $(-2,5)$ and $(1,3)$. $r=\frac{1}{2}$ diameter
Midpoint formula; $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$
Example of when you might use this:
Find the midpoint of the segment with endpoints at $(3,-4)$ and $(-2,-6) \quad\left(\frac{3 t-2}{2}, \frac{-4 t-6}{2}\right)$

Example:

$$
(x-2)^{2}+(y+5)^{2}=25
$$

What is the center of the graph? $\quad(2,-5)$
What is the radius of the graph? $\sqrt{25}=5$

$$
(x-h)^{2}+(y-k)^{2}=r^{2}
$$

