\qquad
-Solve by Completing the Square Notes ~
MCC9-12.A.REI.4b: I can solve by completing the square.

* Certain quadratic equations can be factored into Perfect Squares. Factor the following quadratic expressions to see why these are called Perfect Square Trinomials:
- $x^{2}+6 x+9$

$$
(x+3)(x+3) \rightarrow(x+3)^{2}
$$

- $x^{2}-10 x+25 \frac{25}{\frac{1,2 c}{5,5}}$

$$
(x-5)(x-5) \rightarrow(x-5)^{2}
$$

$$
(x+6)(x+6) \rightarrow(x+6)^{2}
$$

$\begin{array}{ll}2,1 \\ 2 & 1,2 \\ \text { are Trinomid }\end{array}$ \qquad

* Creating a Perfect Square Trinomial

- In the following perfect square trinomial, the \qquad constant term is missing.

$$
x^{2}+14 x+
$$

\qquad

- Find the Constant ${ }^{2}$ term by squaung half the coefficient of the linear term. Put this number in the blank - we say that this number "completes the square."

$$
\begin{array}{r}
(14 / 2)^{2}=7^{2} \\
x^{2}+14 x+49
\end{array}
$$

* Create perfect square trinomial by finding the number that completes the square. Then factor the perfect square trinomials:
- $x^{2}+20 x+100\left(\frac{20}{2}\right)^{2}=100$
- $x^{2}-4 x+4 \quad\left(-\frac{4}{2}\right)^{2}=$
- $x^{2}+5 x+25 / 4(5 / 2)^{2}=$

Solving Quadratic Equations by Completing the Square

Solving Quadratic Equations by Completing the Square
†. Rewrite so all terms containing x are on one side.
2. Find the number that completes the square on the left side of the equation. Add that number to both sides,
3. Factor the perfect square trinomial on the left side of the equation. Simplify the right side of the equation.
4. Take the square root of each side.
5. Solve for x.
6. Check your answers!!!

Examples: Solve each quadratic equation by completing the square.

$$
\begin{aligned}
& \text { 1) } x^{2}-10 x-54=0 \\
& x^{2}-10 x+25 \\
& \sqrt{(x-5)^{2}}=\sqrt{79} \\
& x=5 \pm \sqrt{79} \\
& \text { 4) } x^{2}+6 x-72=-8 \\
& x^{2}+6 x+9=64+9 \\
& \sqrt{(x+3)^{2}}=\sqrt{73} \\
& x=-3 \pm \sqrt{73} \\
& \text { 7) } \frac{2 x^{2}-28 x+\frac{8}{2}=0}{2} \\
& x^{2}-14 x+4=0 \\
& x^{2}-14 x+\frac{49}{2}=-4+\frac{49}{3} \\
& \sqrt{(x-7)^{2}}=\sqrt{45} \\
& x=7 \pm 3 \sqrt{5}
\end{aligned}
$$

$$
\text { 2) } x^{2}-18 x+77=0
$$

$$
x^{2}-18 x+81=-77+81
$$

$$
\sqrt{(x-9)^{2}}=\sqrt{4}
$$

$$
x=9 \pm 2
$$

$$
x=11,7
$$

$$
\text { 5) } x^{2}-10 x-56=6
$$

$$
x^{2}-10 x+25=62+25
$$

$$
\sqrt{(x-5)^{2}}=87
$$

$$
x=5 \pm \sqrt{87}
$$

$$
\begin{aligned}
& \text { 8) } \frac{3 x^{2}}{3}+\frac{12 x}{3}-\frac{6}{3}=\frac{0}{3} \\
& x^{2}+4 x-2=0
\end{aligned}
$$

$$
\text { 3) } x^{2}+20 x-73=0
$$

$$
\text { 4) }{ }^{\text {3) } x^{2}}
$$

$$
x^{2}+20 x+100=73
$$

$$
\sqrt{(x+10)^{2}} \sqrt{173}
$$

$$
x=-10 \pm \sqrt{173}
$$

$-14 x-75=8$

$$
\begin{gathered}
x^{2}-14 x+49=83+49 \\
\sqrt{(x-7)^{2}}=\sqrt{132} \\
x=7 \pm 2 \sqrt{33}
\end{gathered}
$$

9) $5 x^{2}$

$$
x^{2}+4 x+4=2+4
$$

$$
\begin{aligned}
& -20 x-18=7 \\
& +18
\end{aligned}+18 .
$$

$$
\sqrt{(x+2)^{2}}=\sqrt{6}
$$

$$
x=-2 \pm \sqrt{6}
$$

$$
\begin{aligned}
& x^{2}-4 x+\frac{4}{\sqrt{(x-2)^{2}} \sqrt{9}}=5+4 \\
& x=2 \pm 3
\end{aligned}
$$

$$
x=5,-1
$$

