GSE Algebra 1

~Solve by Completing the Square Notes~

MCC9-12.A.REI.4b: I can solve by completing the square.

- Certain quadratic equations can be factored into Perfect Squares. Factor the following quadratic expressions to see why these are called Perfect Square Trinomials:
 - $x^{2} + 6x + 9$ • $x^{2} + 6x + 9$ • $x^{2} - 10x + 25$ • $x^{2} - 10x + 25$ • $x^{2} + 12x + 36$ •
- Creating a Perfect Square Trinomial
 - In the following perfect square trinomial, the <u>constant</u> term is missing.

X² + 14x + ____

• Find the <u>CONStant</u> term by <u>squaung</u> <u>half</u> the coefficient of the linear term. Put this number in the blank - we say that this number "completes the square."

$$(14/2)^2 = 72$$

+ 14x + 49

 Create perfect square trinomials by finding the number that completes the square. Then factor the perfect square trinomials:

x²

 $x^2 + 20x + 100 \left(\frac{20}{2}\right)^2 = 100$

 $x^2 - 4x + \frac{1}{2} \left(-\frac{1}{2} \right)^2 =$

o x2 + 5x + 25/4 (5/2)2 =

Name

	Example 1	Example 2
the following equation by leting the square:	$x^2 + 8x - 20 = 0$	$x^2 - 6x - 35 = 0$
: Move the Constant term to left side equation.	$\chi 2 + 8 \chi = 20$	X2-6X= 35
Find the Number that completes the square on the left side of the equation. Take (b/2) ^{2.} Add that number to both sides	$x^{2} + 8x + \underline{16} = 20 + \underline{16}$ $\left(\frac{8}{2}\right)^{2} = 16$ $\left(\frac{8}{2}\right)^{2} = 4$	$x^{2} - 6x + \underline{9} = 35 + \underline{9}$ $\left(\frac{-6}{2}\right)^{2} = 9$ $\left(\frac{-6}{2}\right) = 3$
Factor the perfect square trinomial on the left side of the equation. Simplify the right side of the equation. In the form $\left(x \pm \frac{b}{2}\right)^2 = #$	$(x+4)^2 = 36$	$(x - 3)^2 = 44$
which one is appropriate!! Take the square root of both sides. DON'T FORGET ±	$\sqrt{(x+4)^2} = \sqrt{36}$	U(X-3)2-244
Set up the TWO possibilities and	$X = -4 \pm 6$ $X = -4 \pm 6 = 2$ $X = -4 - 6$	$X = 3 \pm 2\sqrt{11}$

Solving Quadratic Equations by Completing the Square

MCC9-12.A.REI.4b

Solving Quadratic Equations by Completing the Square

- +. Rewrite so all terms containing x are on one side.
- 2. Find the number that completes the square on the left side of the equation. Add that number to both sides,
- 3. Factor the perfect square trinomial on the left side of the equation. Simplify the right side of the equation.
- 4. Take the square root of each side.
- 5. Solve for x.
- 6. Check your answers!!!

Examples: Solve each quadratic equation by completing the square.

