complex Numbers

Introduction to Complex Numbers

* The imaginary number, i, is defined as the number whose \qquad is -1 .

$$
\begin{aligned}
& i^{2}= \\
& i= \\
& \hline
\end{aligned}
$$

\qquad and \qquad numbers together make up the set of \qquad numbers.

* A complex number is any number of the form \qquad (or \qquad), where a and b are \qquad numbers.

Simplifying Radicals Involving Complex \#s

Product Property of Square Roots	Imaginary Roots
$\sqrt{a b}=\sqrt{a} \cdot \sqrt{b}$	For any non-negative real number, $\sqrt{-x}=i \sqrt{x}$

For \#s 1-8, simplify the radical.

1) $\sqrt{-2}$
2) $2 \sqrt{-8}$
3) $2 \sqrt{-48}$
4) $4 \sqrt{-50}$
5) $\sqrt{-98}$
6) $-3 \sqrt{-24}$
7) $\sqrt{-9}$
8) $\sqrt{-32}$

Powers of \mathbf{i}

By hand, Divide the EXPONENT OF $\boldsymbol{i}^{\boldsymbol{n}}$ by 4. The result is:	If divided in the calculator, your decimal value is		
$i^{1}=$	If the remainder is ...	0	No decimal
$i^{2}=$	If the remainder is ...	1	.25
$i^{3}=$	If the remainder is ...	2	.5
$i^{4}=$	If the remainder is ...	3	.75

For \#s 9-12, Simplify.

9) $i^{26}=$
10) $i^{44}=$
11) i^{29}
12) $i^{79}=$

Operations with Complex Numbers		
		$(-3+4 i)+(-3+i)$
	Q O E ®	$(4-5 i)-(5+8 i)$
	¢	$(-2+4 i)(-1+3 i)$
	¢	$(-3+i) \div(4-3 i)$

