Solve by Completing the Square
Steps:

1. Remember a must be $=1$ to use this method.
2. Isolate $\mathrm{x}^{2}+\mathrm{bx}$ on left side of the equal sign and the constant c on the right side.
3. Take $1 / 2$ of the coefficient b of the $b x$ term.
4. Square that result and add that to both sides of the equation.
5. Create (factor) a perfect square... Left side will be in the form: $(x-b / 2)^{2}$ or $(x+b / 2)^{2}$
6. Take the square root of both sides to isolate the variable. Don't forget the \pm

Find the value of c that completes the square:

$$
\frac{6}{2}=3 \quad c=9 \quad \frac{12}{2}=9 \quad c=36
$$

Solve the equation by completing the square:

$$
\begin{aligned}
& \begin{array}{r}
x^{2}-8 x+12=-12 \\
-12
\end{array} \\
& x^{2}-8 x+16=-12+16 \\
& \sqrt{(x-4)^{2}}=\sqrt{4} \\
& x=4 \pm 2 \\
& \frac{x=6, x=2}{x^{2}-8 x+25=0} \begin{aligned}
-25 \\
-25
\end{aligned} \\
& x 2-8 x+\frac{x^{2}-8 x+25=0}{16}=-25+16 \\
& \sqrt{x-4)^{2}}=\sqrt{-9} \\
& \begin{array}{l}
\sqrt{x-4)^{2}}=\sqrt{-9} \\
x=4 \pm 3 i
\end{array} \\
& \begin{array}{c}
x^{2}-6 x+14=0 \\
x^{2}-6 x+9=14+9 \\
\sqrt{(x-3)^{2}}=\sqrt{23} \\
x=3 \pm \sqrt{23}
\end{array} \\
& \begin{array}{l}
x^{2}-8 x+12=-0 \\
-12
\end{array} \\
& x^{2}-14 x=4 \\
& x^{2}-14 x+49=4+49 \\
& \sqrt{(x-7)^{2}} \sqrt{53} \\
& x=7 \pm \sqrt{53}
\end{aligned}
$$

