PROOFS USING DISTANCE AND SLOPE

$$
\frac{\text { Distance }}{\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}} \sqrt{\sqrt{(\Delta x)^{2}+(\Delta y)^{2}}}
$$

Midpoint
$\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$

Slope
$\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{\Delta y}{\Delta x}$

The diagonals of a parallelogram bisect each other. For \#1-2, prove that $A B C D$ is a parallelogram for each case by showing that AE is congruent to EC and BE is congruent to ED .
(1)

Midpoint of AC:

$$
\left(\frac{-1+5}{2}, \frac{3+-1}{2}\right)
$$

$$
\left(\frac{4}{2}, \frac{2}{2}\right)
$$

$$
(2,1)
$$

Midpoint of DB:

$$
\left(\frac{-3+7}{2}, \frac{-2+4}{2}\right)
$$

$$
\left(\frac{4}{2}, \frac{2}{2}\right)
$$

$$
(2,1)
$$

The diagonals of a rectangle are congruent. For \#3-5, prove that ABCD is a rectangle for each case by
showing that diagonals AC and BD are congruent.
(3)

(4)

$$
\begin{aligned}
A C & =\sqrt{(4-5)^{2}+(-1-1)^{2}} \\
& =\sqrt{(9)^{2}+(-2)^{2}} \\
= & \sqrt{(81)+(4)}=\sqrt{85} \\
B D & =\sqrt{(3-3)^{2}+(3-4)^{2}} \\
& =\sqrt{(6)^{2}+(7)^{2}} \\
= & \sqrt{(36+(49)}=\sqrt{85}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{AC} & =\sqrt{(3--2)^{2}+(-2-3)^{2}} \\
& =\sqrt{(5)^{2}+(-5)^{2}} \\
= & \sqrt{(25)+(25)}=\sqrt{50}=5 \sqrt{2} \\
\mathrm{BD} & =\sqrt{(4-3)^{2}+(1-0)^{2}} \\
& =\sqrt{(7)^{2}+(1)^{2}}
\end{aligned}
$$

(5)

$$
\mathrm{AC}=\sqrt{(4-7)^{2}+(3-3)^{2}}
$$

$$
=\sqrt{(5)^{2}+(0)^{2}}
$$

$$
=\sqrt{(25)+(0)}=\sqrt{25}=5
$$

$$
\mathrm{BD}=\sqrt{(0-3)^{2}+(1-5)^{2}}
$$

$$
=\sqrt{(-3)^{2}+(-4)^{2}}
$$

$$
=\sqrt{(49)+(1)}=\sqrt{50}=5 \sqrt{2}=\sqrt{(9)+(16)}=\sqrt{25}=5
$$

Midpoint of AC:
$\left(\frac{-1+3}{2}, \frac{2+-8}{2}\right)$
$\left(\frac{2}{2}, \frac{-6}{2}\right)$
$(1,-3)$

Midpoint of DB:
$\left(\frac{-4+6}{2}, \frac{-7+1}{2}\right)$
$\left(\frac{2}{2}, \frac{-6}{2}\right)$
($1,-3$)

The diagonals of a rhombus are perpendicular. For \#6-8, prove that ABCD is a rhombus for each case by showing that the slopes of diagonals AC and BD are opposite reciprocals of each other.
(6)

(7)

$m_{\mathrm{AC}}=\frac{1--3}{4--8}=\frac{4}{12}=\frac{1}{3}$
$m_{\mathrm{BD}}=\frac{-4-2}{-1--3}=\frac{-6}{2}=-3$
(8)

$m_{\mathrm{AC}}=\frac{-4--2}{5-1}=\frac{-2}{4}=\frac{-1}{2}$
$m_{\mathrm{BD}}=\frac{1--7}{5-1}=\frac{8}{4}=2$

The diagonals of a square are both congruent and perpendicular. For \#9-10, prove that ABCD is a square for each case by showing that diagonal AC is congruent to BD and that the slopes of AC and BD are opposite reciprocals. Show work.
(9)

$$
\begin{aligned}
& =\sqrt{\mathrm{AC}}\left(4--2^{2}+(-3-1)^{2} \quad \cdot m_{\mathrm{AC}}=\frac{-3-1}{4--2}\right. \\
& =\frac{-4}{6}=\frac{-2}{3} \\
& =\sqrt{(36)+(16)}=\sqrt{52}= \\
& \text { BD } \\
& =\sqrt{(3-1)^{2}+(2--4)^{2}} \\
& -4)^{2} m_{B D}=\frac{2--4}{3-1}= \\
& \begin{aligned}
& =\sqrt{(4)^{2}+(6)^{2}} \\
= & \sqrt{(16)+(36)}=\sqrt{52}=2 \sqrt{13}
\end{aligned} \\
& =\frac{6}{4}=\frac{3}{2}
\end{aligned}
$$

$$
\begin{array}{c|c}
A C \tag{10}\\
=\sqrt{(4--2)^{2}+(-7-3)^{2}} \\
=\sqrt{(6)^{2}+(-10)^{2}} \\
=\sqrt{(36)+(100)}=\sqrt{136} \\
& m_{\mathrm{AC}}=\frac{-7-3}{4--2} \\
& =\frac{-10}{6}=\frac{-5}{3} \\
=\sqrt{(6--4)^{2}+(1-5)^{2}} \\
=\sqrt{(10)^{2}+(6)^{2}} \\
=\sqrt{(100)+(36)}=\sqrt{136}
\end{array} \quad \begin{aligned}
m_{\mathrm{BD}} & =\frac{1--5}{6--4} \\
& =\frac{6}{10}=\frac{3}{5}
\end{aligned}
$$

