Ellipses

- An Ellipse is sometimes referred to as an \qquad .
- The denominators of the equation determine how \qquad and \qquad the graph is.
- The major axis is the \qquad axis of the ellipse.
- The minor axis is the \qquad axis of the ellipse.
- The Vertices are the end points of the \qquad axis.
- The Co-vertices are the end points of the \qquad axis.
- The \qquad of an ellipse are the 2 points whose sum of distances from any point on the ellipse is always the same.
- The Foci points always lie on the \qquad axis.
- For ellipses, "a" is always \qquad .

Standard Form	Orientation	Description
$\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1$ Where $\mathrm{c}^{2}=$		Center: Foci: Major Axis: Major Axis vertices: Minor Axis: Co-vertices:
$\frac{(x-h)^{2}}{b^{2}}+\frac{(y-k)^{2}}{a^{2}}=1$ Where $\mathrm{c}^{2}=$		Center: Foci: Major Axis: Major Axis vertices: Minor Axis: Co-vertices:

Graph the following:

$$
\frac{(x-4)^{2}}{25}+\frac{(y+2)^{2}}{4}=1
$$

$\mathrm{a}=$ \qquad $\mathrm{b}=$ \qquad
Center: (__, ___)
Vertices:

Co-Vertices:

Foci Distance: $\mathrm{c}^{2}=\mathrm{a}^{2}-\mathrm{b}^{2}$

Foci Points:

Graph the following:

$$
\frac{(x+1)^{2}}{16}+\frac{(y-2)^{2}}{25}=1
$$

$\mathrm{a}=$ \qquad $\mathrm{b}=$ \qquad
Center: (__ _ _)
Vertices:

Co-Vertices:

Foci Distance: $\mathrm{c}^{2}=\mathrm{a}^{2}-\mathrm{b}^{2}$

Foci Points:

