Ellipses

- An Ellipse is sometimes referred to as an OVal \qquad -.
- The denominators of the equation determine how \qquad long and \qquad wide the graph is.
- The major axis is the \qquad axis of the ellipse.
- The minor axis is the \qquad axis of the ellipse.
- The Vertices are the end points of the \qquad major axis.
- The Co-vertices are the end points of the \qquad minus axis.
- The for i of an ellipse are the 2 points whose sum of distances from any point on the ellipse is always the same.
- The Foci points always lie on the \qquad major axis.
- For ellipses, "a" is always bigger .

a^{2} is bigger den.
Graph the following:

Center: $(4,-2)$
Vertices: $(4 \pm 5,2)$

$$
(9,2),(-1,-2)
$$

Co-Vertices:

$$
\begin{aligned}
& (4,-2 \pm 2) \\
& (4,0),(4,4)
\end{aligned}
$$

Foci Distance: $c^{2}=a^{2}-b^{2}$

$$
\begin{aligned}
& \sqrt{c^{2}=a^{2}-b^{2}} \sqrt{C^{2}}=25-4 \\
& C= \pm \sqrt{21} \text { on } C= \pm 4.6
\end{aligned}
$$

Foci Points:

$$
\begin{aligned}
& (4 \pm 4.6,-2) \rightarrow(4 \pm \sqrt{21},-2) \\
& (8.6,-2) \text { and }(-.6,-2) \text { OR }(4 \pm \sqrt{21},-2)
\end{aligned}
$$

Graph the following:
$\sqrt{25}$

$$
\frac{(x+1)^{2}}{16}+\left(\frac{(y-2)^{2}}{25}\right)=1
$$

$a=5$

$$
b=4
$$

Center: (1 2)
Vertices:

$$
\begin{aligned}
& (-1,2 \pm 5) \\
& (-1,7),(-1,-3)
\end{aligned}
$$

co-Vertices:

$$
\begin{aligned}
& (-1 \pm 4,2) \\
& (-5,2),(3,2)
\end{aligned}
$$

Foci Distance: $\mathrm{c}^{2}=\mathrm{a}^{2}-\mathrm{b}^{2}$

$$
\begin{aligned}
& \sqrt{c^{2}}+\begin{array}{l}
\\
c
\end{array}= \pm \sqrt{25}-16 \\
& c= \pm 3
\end{aligned}
$$

Foci Points:

$$
\begin{aligned}
& (-1,2 \pm 3) \\
& (-1,5),(-1,-1)
\end{aligned}
$$

