Hyperbola

- A Hyperbola is made up of 2 parabolas that are \qquad .
- The denominators of the equation determine how \qquad and \qquad the box is.
- The Vertices of a Hyperbola always lie on the \qquad which always go in the direction of the positive variable.
- The Foci points always lie on the \qquad of the parabolas.

With Hyperbolas, a^{2} is always the first denominator!

Graph the following:

$$
\frac{(x-4)^{2}}{25}-\frac{(y+2)^{2}}{4}=1
$$

Center: \qquad
$\mathrm{a}^{2}=$ \qquad $\mathrm{a}=$ \qquad
$\mathrm{b}^{2}=$ \qquad $\mathrm{b}=$ \qquad
Transverse axis: \qquad
Vertices:
Co~Vertices:
Foci Distance: $\mathrm{c}^{2}=\mathrm{a}^{2}+\mathrm{b}^{2}$

Foci Points:

Graph the following:

$$
\frac{(y+2)^{2}}{25}-\frac{(x-3)^{2}}{16}=1
$$

Center: \qquad
$a^{2}=$ \qquad $\mathrm{a}=$ \qquad
$b^{2}=$ \qquad $b=$ \qquad

Transverse axis: \qquad
Vertices:
Co~Vertices:
Foci Distance: $c^{2}=a^{2}+b^{2}$

Foci Points:

Writing Equations of a Hyperbola Given

1. Look to see what coordinates change.
$\checkmark \quad$ If the $\mathrm{x} \sim$ coordinates change, the transverse axis will be horizontal (x is first and a^{2} will be under x)
$\checkmark \quad$ If the $y \sim$ coordinates change, the transverse axis will be vertical (y is first and a^{2} will be under y)
2. Find the center.

$$
\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)
$$

3. Find the length of a.
$a=$ center to vertex
Determine a^{2}
4. Find the length of c .
$\mathrm{c}=$ center to foci
Determine c^{2}
5. Use the formula $c^{2}=a^{2}+b^{2}$ to find the value of b^{2} by substituting the values of a^{2} and c^{2} into the formula. Solve for b^{2}.
6. Substitute the values of a^{2}, b^{2}, and (h, k) into the formula.

$$
\begin{aligned}
& \frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1 \\
& \frac{(y-k)^{2}}{a^{2}}-\frac{(x-h)^{2}}{b^{2}}=1
\end{aligned}
$$

Find the equation of a hyperbola whose vertices are at $(\sim 5,1)$ and $(1,1)$ and whose foci are at $(\sim 6,1)$ and $(2,1)$

Find the equation of a hyperbola whose vertices are at $(\sim 1, \sim 1)$ and $(\sim 1,7)$ and whose foci are at $(\sim 1,8)$ and $(\sim 1, \sim 2)$.

