Hyperbola

- A Hyperbola is made up of 2 parabolas that are symmetncal
- The denominators of the equation determine how tall and
\qquad
\qquad Wide the box is.
- The Vertices of a Hyperbola always lie on the palabllafhich always go in the direction of the positive variable.
- The Foci points always lie on the \qquad ins ide of the parabolas.

With Hyperbolas, a^{2} is always the first denominator

y is first, so $a^{2}=24$

$$
\left(\frac{y+2)^{2}}{25}\right)-\frac{(x-3)^{2}}{16}=1
$$

$$
\begin{aligned}
& a^{2}=\frac{25}{} a=\frac{5}{4} \\
& b^{2}=\frac{16}{} b=4
\end{aligned}
$$

Transverse axis: \qquad
Vertices: $(3,-2 \pm 5) \quad(3,-7),(3,3)$
Co-vertices: $(3 \pm 4,-2) \quad(7,-2),(-1,-2)$
Foci Distance: $c^{2}=a^{2}+b^{2}$

$$
\begin{gathered}
\sqrt{C^{2}}=25+16 \\
c= \pm \sqrt{41}
\end{gathered}
$$

Foci Points:

$$
(3,-2 \pm \sqrt{41})
$$

Writing Equations of a Hyperbola Given

1. Look to see what coordinates change.
\checkmark If the x-coordinates change, the transverse axis will be horizontal (x is first and a^{2} will be under x)
If the y-coordinates change, the transverse axis will be vertical (y is first and a^{2} will be under y)
2. Find the center.

$$
\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)
$$

3. Find the length of a.
$a=$ center to vertex
Determine a^{2}
4. Find the length of c.
$\mathrm{c}=$ center to foci
Determine c^{2}
5. Use the formula $c^{2}=a^{2}+b^{2}$ to find the value of b^{2} by substituting the values of a^{2} and c^{2} into the formula. Solve for b^{2}.
6. Substitute the values of a^{2}, b^{2}, and (h, k) into the formula.

$$
\begin{aligned}
& \frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1 \\
& \frac{(y-k)^{2}}{a^{2}}-\frac{(x-h)^{2}}{b^{2}}=1
\end{aligned}
$$

Find the equation of a hyperbola whose vertices are $(-5), 1)$ and $(1), 1)$ and whose foci are at $(-6,1)$ and $(2,1)$

$$
\text { (2) }\left(\frac{-5+1}{2}, \frac{1+1}{2}\right)=(-2,1)
$$

(3)

$$
\begin{array}{cc}
a=(-2,1) & \rightarrow(-5,1) \\
a=3 & a^{2}=9
\end{array}
$$

(4)

$$
\begin{array}{cc}
C=(-2,1) \text { to } & (-6,1) \\
c=4 & c^{2}=16
\end{array}
$$

(5)

$$
\begin{gathered}
c^{2}=a^{2}+b^{2} \\
\frac{16}{}=-9+b^{2} \\
7=b^{2}
\end{gathered}
$$

(b)

$$
\frac{(x+5)^{2}}{9}-\frac{(y-1)^{2}}{7}=1
$$

Find the equation of a hyperbola whose vertices are at $(-1,-1)$ and $(-1,7)$ and whose foci are at $(-1,8)$ and $(-1,-2)$.
(2) $\left(\frac{-1+-1}{2}, \frac{-1+7}{2}\right)=(-1,3)$
(3) $a=(-1$ (3) $) \rightarrow(-1-1)$

$$
a=4 \quad a^{2}=16
$$

(4)

$$
\begin{aligned}
& C=(-1,3) \rightarrow(-1,8) \\
& C=5 \quad C^{2}=25
\end{aligned}
$$

$$
\begin{aligned}
& \text { (5) } c^{2}=a^{2}+b^{2} \\
& 25=16+b^{2} \\
& \frac{-16}{25} \\
& 9=b^{2}
\end{aligned}
$$

(6) $\frac{(y+1)^{2}}{16}-\frac{(x-3)^{2}}{9}=1$

