Algebra 2
Compound Interest Practice

1) Mofor invests $\$ 1, \frac{P}{3} 7$ in a retirement account with a fixed annual interest rate of $r=.0404 \quad 4.04 \%$ compounded 3 times per year. $m=3$ years?

$$
t=18
$$

$$
A=1337\left(1+\frac{.0404}{3}\right)^{3.18}
$$

$$
\$ 2753.23
$$

3) Kathryn invests $\$ 4,261$ in a savings account with a fixed annual interest rate of 4.92% compounded 3 times per year. What will the account balance be after 7 . years?

$$
4261\left(1+\frac{0492}{3}\right)^{3 \cdot 7}
$$

$$
\$ 5996.11
$$

5) Jack invests $\$ 4,268$ in a savings account with a fixed annual interest rate of 7.40% compounded 12 times per year. What will the account balance be after 12 years? .

$$
\begin{gathered}
4268\left(1+\frac{.0740}{12}\right)^{12 \cdot 12} \\
\$ 10344.12
\end{gathered}
$$

7) Eduardo invests $\$ 5,975$ in a savings account with a fixed annual interest rate of 7.77% compounded 3 times per year. What will the account balance be after 9 years?

$$
\begin{gathered}
5975\left(1+\frac{.0777}{3}\right)^{3-9} \\
11,917 \cdot 19
\end{gathered}
$$

Name
2) Willie invests $\$ 6,003$ in a savings account with a fixed annual interest rate of 4.64% compounded 6 times per year. What will the account balance be after 9 years?

$$
A=6003\left(1+\frac{.0464}{6}\right)^{6.9}
$$

920
$\$ 9099.80$
4) Jennifer invests $\$ 1,601$ in a savings account with a fixed annual interest rate of 8.77% compounded 4 times per year. What will the account balance be after 5 years?

$$
1,601\left(1+\frac{.0877}{4}\right)^{4.5}
$$

$$
\$ 2470.43
$$

6) Nicole invests $\$ 5,202$ in a savings account with a fixed annual interest rate of 3.17% compounded 3 times per year. What will the account balance be after 11 years?

$$
\begin{aligned}
& 5202\left(1+\frac{.0317}{3}\right)^{3.11} \\
& \$ 7358.92
\end{aligned}
$$

8) Kathryn invests $\$ 5,010$ in a retirement account with a fixed annual interest rate of 5.15% compounded 2 times per year. What will the account balance be after 16 years?

$$
\begin{aligned}
& 5,010\left(1+. \frac{.0515}{2}\right)^{2.16} \\
& 11,302.29
\end{aligned}
$$

9) Omani invests $\$ 1,231$ in a retirement account with a fixed annual interest rate of 6.05% compounded 6 times per year. How long will it take for the account balance to reach $\$ 3,637.78$?

$$
\begin{aligned}
& \text { lance to reach } \$ 3,637.78 ? \\
& 3637: 78 t 1231\left(1+\frac{.0605}{6}\right)^{6 t}
\end{aligned}
$$

11) Mark invests $\$ 4,969$ in a retirement account with a fixed annual interest rate of 7.93% compounded 12 times per year.
12) Totsakan invests $\$ 5,581$ in a retirement

$$
\begin{gathered}
\left.8.945 .39=5581(1+.0364)^{6}\right)^{6} \\
1.60=(1.006)^{66} \\
\frac{\log 1.0}{\log 1.006}=6 t \\
78.6=6 t \\
t \pi 13 \mathrm{gns}
\end{gathered}
$$ will it take for the account balance to reach $\$ 14,132.62$?

$$
14,132.62=6209\left(1+\frac{.0831}{4}\right)^{4 t}
$$

$$
2.96=(1.01)
$$

$$
2.28=(1.021)^{4 t}
$$

$$
\frac{\log _{296}}{\log 1.01}=6
$$

$$
\begin{aligned}
& 109.06=12 t
\end{aligned}
$$

$$
\frac{\log 2.28}{\log 1.021}=4 t
$$

$$
t \approx 18 \text { yes }
$$

$$
\begin{aligned}
3 G 1 女 & =4 t \\
t & =10 \mathrm{yMs}
\end{aligned}
$$ How long will it take for the account account with a fixed annual interest rate of 3.64% compounded 6 times per year. How long will it take for the account

15) Maria invests $\$ 2,819$ in a retirement
16) Shanice invests $\$ 3,980$ in a retirement

How long will it take for the account How long will it take for the account

$$
168
$$ account with a fixed annual interest rate of 2.18% compounded 3 times per year. How long will it take for the account balance to reach $\$ 3,904.77$?

$$
\begin{aligned}
& 3904.77=2819(1+.0218)^{3 t} \\
& 1.39=(1.007)^{36 t} \\
& \frac{\log 1.39}{} 103 t \\
& \log 1.0077 .2=3 t \\
& 47 \approx 16 \text { yrs }
\end{aligned}
$$

10) John invests $\$ 6,209$ in a savings account with a fixed annual interest rate of 8.31% compounded 4 times per year. How long account with a fixed annual interest rate of 8.81% compounded 12 times per year.
11) Castel invests $\$ 3,634$ in a retirement account with a fixed annual interest rate of 2.48% compounded 3 times per year. balance to reach $\$ 5,810.10$?

$$
5810.10=3634\left(1+.0 \frac{248}{3}\right)^{3 t}
$$

$$
\begin{aligned}
& 1.6=1.008^{3 t} \\
& 1091.6
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\log 1.6}{\log 1.008}=3 t-3 t \quad t
\end{aligned}
$$

$60=3 t \quad t$
, 275 in a retirement
16) Julio invests $\$ 5,275$ in a retirement account with a fixed annual interest rate of 5.97% compounded 3 times per year. How long will it take for the account

$$
\begin{aligned}
& 1,287.36=5275\left(1+\cdot \frac{.0597}{3}\right)^{3 t} \\
& 2.9=(1.02)^{3 t} \\
& \frac{\log 2.9}{\log 9.02}=3 t \\
& 53.8=3 t \\
& t \approx 18 y 15
\end{aligned}
$$

$$
\begin{aligned}
& \text { balance to reach } \$ 24,143.16 \text { ? } \\
& 24,143.16=4969\left(1+\frac{.0793}{2}\right)^{12 t^{\text {balance to reach } \$ 21,095.66} \text { ? }} \\
& 4.86=(1.007)^{12 t} \\
& \frac{\log 4.86}{\log 1.007}=12 t \\
& \begin{array}{r}
226.65=12 t \\
t \approx 19 y 15
\end{array} \\
& 24,143.16=4969\left(1+\frac{.0793}{2}\right)^{124} \\
& \begin{array}{l}
21,095.66=3,980(1+.0881)^{12 t} \\
5.3=(1.007)^{12 t}
\end{array} \\
& \begin{array}{l}
21,095.66=3,980\left(1+\frac{.0881}{12}\right)^{12 t} \\
5.3=(1.007)^{12 t}
\end{array} \\
& \begin{array}{l}
\frac{\log 5.3}{\log 1.007}=12 t \\
239.08=12 t
\end{array} \\
& 239.08=12 t \quad t \approx 20 \mathrm{gis}
\end{aligned}
$$

