Compound Interest
$A=$ Total Amount

$$
A=P\left(1+\frac{r}{n}\right)^{n t}
$$

Annually $=1$
Monthly $=12$
Weekly $=52$
Semiannually $=2$
Quarterly $=4$
Daily $=365$

Jack invests $\$ 2,804$ in a savings account with a fixed annual interest rate of 7.52% compounded 4 times per year. What will the account balance be after 9 years?

$$
\begin{aligned}
& \quad A=P\left(1+\frac{r}{h}\right)^{n t} \\
& P=2804 \\
& r=7.52 \%=.0752 \\
& n=4 \\
& t=9
\end{aligned}
$$

$$
\begin{gathered}
2804\left(1+\frac{.0752}{4}\right)^{4.9} \\
\$ 5482.51
\end{gathered}
$$

Stephanie invests $\$ 3,614$ in a retirement account with a fixed annual interest rate of 8.68% compounded 12 times per year. How long will it take for the account balance to reach $\$ 15,722.68$?

$$
\begin{aligned}
& 15,72268=3614\left(1+\frac{.0868}{12}\right)^{12 t} \\
& \frac{15,722.68}{46119} \cdot \frac{3614}{3614}\left(1+\frac{.0868}{12}\right)^{12 t} \\
& 4.35=\left(1+\frac{.0868}{12}\right)^{12 t} \\
& 4.35=(1.007)^{12 t} \\
& \frac{\log 4.35=10 g(1.007)^{12 t}}{\frac{10 g 4.35}{10 g 1.007}=12 t} \\
& 210.76=12 t \\
& t \approx 18 \text { years }
\end{aligned}
$$

Compound Interest (using Logs) Notes
Examples:

1) You deposit $\$ 5000$ in an account that yields 3.6% annual interest. Find the balance after 2 years if the interest is compounded with the given frequencies:
a) Semiannually: $n=2$

$$
\begin{gathered}
5000\left(1+\frac{.036}{2}\right)^{2(2)} \\
5000\left(1+\frac{.036}{2}\right)^{4} \\
55369.83
\end{gathered}
$$

b) Quarterly: $n=4$

$$
\begin{gathered}
5000\left(1+\frac{.036}{4}\right)^{4.2} \\
5000\left(1+\frac{.036}{4}\right)^{8} \\
\$ 5371.54
\end{gathered}
$$

$n=12$
2) You were charged 8.8% compounded monthly on your credit card balance of $\$ 2500$. If you did not make any payments on the card, how much would you owe in total after 1 year?

$$
\begin{array}{lr}
n=12 & 2500\left(1+\frac{.088}{12}\right)^{12 \cdot 1} \\
t=1 & \$ 2729.09 \\
p=2500 & \\
r=.088 & n=36 r
\end{array}
$$

3) You put $\$ 1$ into an account that yields 5% compounded daily. How much money will you have after 1 year?

$$
\begin{aligned}
& t=1 \\
& P=\$ 1 \\
& r=.05 \\
& n=366
\end{aligned}
$$

$$
1\left(1+\frac{.05}{365}\right)^{365.1}
$$

4) How long will it take for $\$ 500$ to double if the interest rate is 3.5% and it's compounded monthly? $\$ 500$ doubled $=31000$

$$
\begin{aligned}
& n=12 \\
& A=5000 \\
& p=500 \\
& r=.035 \\
& t=2
\end{aligned}
$$

$$
\begin{aligned}
& d=31000 \\
& 1000=500\left(1+\frac{.035}{12}\right)^{12 t} \\
& 2=(1.003)^{12 t} \\
& \frac{1092}{1091.003}=12 t \quad \frac{231.40}{12} \quad t \approx 19 y e a s
\end{aligned}
$$

5) How long will it take for $\$ 1500$ to grow into $\$ 4000$ if it compounds quarterly at 5.7% ?

$$
\begin{array}{lcl}
p=5500 & 4000=1500\left(1+\frac{.057}{4}\right)^{4 t} \\
A=4000 & 4000=1500(1.014)^{4 t} & \\
r=.057 & 2.67=(1.014) 4 t & 70.6=4 t \\
t=? & \frac{\log 2.67}{\log 1.0 M}=4 t & t \approx 18 \text { years } \\
n=4 & &
\end{array}
$$

