Use the Law of sines to find each side length. Show all work! Round your answers to the tenth.

1. $\mathrm{b} \approx$

2. $\mathrm{c} \approx$ \qquad

3. $\mathrm{a} \approx$ \qquad

Use the Law of Sines to find each missing angle measure. Show all work! Round your answers nearest tenth.
4. $\mathrm{m} \angle \mathrm{C} \approx$ \qquad
5. $\mathrm{m} \angle \mathrm{A} \approx$ \qquad
6. $\mathrm{m} \angle \mathrm{B} \approx$ \qquad

Use the Law of sines to solve each triangle. Sketch the triangle and show all work! Round your answers to the nearest tenth of a unit.
7) $\triangle \mathrm{ABC}$

$$
\mathrm{m} \angle \mathrm{~A}=
$$

$$
\mathrm{a}=117
$$

$$
\mathrm{m} \angle \mathrm{~B}=36^{\circ}
$$

$$
\mathrm{b}=
$$

\qquad

$$
\mathrm{m} \angle \mathrm{C}=117^{\circ}
$$

$$
c=
$$

\qquad
2. $\triangle \mathrm{ABC}$

$\mathrm{m} \angle \mathrm{A}=102^{\circ}$
$\mathrm{m} \angle \mathrm{B}=46^{\circ}$
$\mathrm{b}=$ \qquad
$\mathrm{m} \angle \mathrm{C}=$ \qquad

$$
c=89.4
$$

$\mathrm{m} \angle \mathrm{A}=$ \qquad $\mathrm{a}=$ \qquad
$\mathrm{m} \angle \mathrm{B}=151^{\circ}$
$\mathrm{b}=412.6$
$\mathrm{m} \angle \mathrm{C}=19^{\circ}$
$\mathrm{c}=$ \qquad
4. $\triangle \mathrm{ABC}$

$$
\begin{array}{ll}
\mathrm{m} \angle \mathrm{~A}=24^{\circ} & \mathrm{a}= \\
\mathrm{m} \angle \mathrm{~B}=39^{\circ} & \mathrm{b}= \\
\mathrm{m} \angle \mathrm{C}= & \mathrm{c}=102
\end{array}
$$

