WRITING PARALLEL LINE EQUATIONS
Parallel Lines has the same slope. The easiest formula to use is Point-slope $y-y_{1}=m\left(x-x_{1}\right)$ because it gives the slope m and a point on the line.
Directions: For \#1-8, write the equation of a line that is parallel (//) to the given line and passes through the given point.
(1) $y=4 x+1$ and the parallel line equation passes through $(5,16)$.

$$
\begin{aligned}
& m=4 \\
& m_{/ /}=4
\end{aligned}
$$

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

$$
y-16=4(x-5)
$$

$$
\begin{aligned}
& y - 1 6 = 4 x - 2 0 \longdiv { y = 4 x - 4 } \\
& y=-2 x+3 \text { and the parallel line equation }
\end{aligned}
$$

(3) $y=-2 x+3$ and the parallel line equation passes through ($18,-31$).

$$
\begin{aligned}
& m=-2 \\
& m_{l /}=-2 \\
& y-y_{1}=m\left(x-x_{1}\right) \\
& y+31=-2(x-18) \\
& y+31=-2 x+36 \quad y=-2 x+5
\end{aligned}
$$

(5) $y=-\frac{2}{3} x+1$ and the parallel line equation passes through $(-15,6)$.

$$
\begin{aligned}
& m=-2 / 3 \\
& m=-2 / 3 \\
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-6=-\frac{2}{3}(x+15) \\
& y-6=-\frac{2}{3} x-10
\end{aligned}
$$

(7) $y=-x-5$ and the parallel line equation passes through $(-7,10)$.

$$
\begin{aligned}
& m=-1 \\
& m_{/ /}=-1
\end{aligned}
$$

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-10=-1(x+7) \quad y=-1 x+3 \\
& y-10=-1 x-7 \quad y
\end{aligned}
$$

(2) $y=-\frac{1}{3} x-2$ and the parallel line equation passes through ($12,-8$).

$$
\begin{aligned}
& m=-1 / 3 \\
& m_{1 /}=-1 / 3
\end{aligned}
$$

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

$$
y+8=-\frac{1}{3}(x-12)
$$

$$
y+8=\frac{-1}{3} x+4 \quad y=\frac{-1}{3} x-4
$$

(4) $y=\frac{3}{5} x+1$ and the parallel line equation passes through (30,24).

$$
\begin{aligned}
& m=3 / 5 \\
& m_{/ /}=3 / 5
\end{aligned}
$$

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-24=\frac{3}{5}(x-30) \quad y=\frac{3}{5} x+6
\end{aligned}
$$

$$
y-24=3 x-18
$$

(6) $y=\frac{3}{7} x+1$ and $\frac{3}{7}$ he parallel line equation passes through ($-35,-22$).

$$
\begin{aligned}
& m=3 / 7 \quad x_{1} \quad y_{1} \\
& m_{I /}=3 / 7 \\
& y-y_{1}=m\left(x-x_{1}\right) \\
& y+22=\frac{3}{7}(x+35) \quad y=\frac{3}{7} x-7 \\
& y+22=\frac{3}{7} x+15 \quad y
\end{aligned}
$$

(8) $y=3 x-4$ and the parallel line equation passes through $(-6,-11)$.

$$
\begin{aligned}
& m=3 \\
& m_{/ /}=3
\end{aligned}
$$

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y+11=3(x+6) \quad y=3 x+7 \\
& y+11=3 x+18
\end{aligned}
$$

PARALLELS OR NOT? same slope = parallel
Directions: For \#1-9, find the slope of each line in simplest form. If the slopes are the same, then circle yes for PARALLEL ($\|$). If not, then circle no.
(1)

Slope $\overrightarrow{A B}=$
Slope $\overline{\mathrm{CD}}=$

$$
\frac{1}{3}=\frac{1}{3} \quad \frac{1}{3}=\frac{1}{3}
$$

(4) Is $\overline{\mathrm{AB}} \| \overline{\mathrm{CD}}$? Yes or No

$$
\begin{array}{ll}
\text { Slope } \overline{N P}= & \text { Slope } \overline{Q R}= \\
\frac{-4}{2}=\frac{-2}{1} & \frac{-6}{3}=\frac{-2}{1}
\end{array}
$$

(7)

Is $\widetilde{N P} \| \overleftrightarrow{Q R}$ Y Yes or No

Slope $\overleftrightarrow{S F}=$

$$
\frac{3}{6}=\frac{1}{2}
$$ Slope $\overleftrightarrow{G N}=$

Is $\overleftrightarrow{S F} \| \overleftrightarrow{G N}$?
(2)

Slope $\overrightarrow{\mathrm{EF}}=$
Slope $\overrightarrow{\mathrm{GH}}=$

$$
\frac{-2}{4}=\frac{-1}{2} \quad \frac{-2}{5}=\frac{-2}{5}
$$

(5)

Is $\overline{\mathrm{EF}} \| \overrightarrow{\mathrm{GH}}$? Yes dr o

Slope $\overline{\mathrm{ST}}=$
Slope $\overrightarrow{U V}=$

$$
\frac{3}{1}=3 \quad \frac{4}{1}=\frac{4}{4}
$$

(8)

Is $\overrightarrow{S T} \| \overrightarrow{U V}$? Yes or No

Slope $\overleftrightarrow{A N}=$ Slope $\overleftrightarrow{G L}=$ $\frac{-5}{6}=\frac{5}{6} \quad-\frac{5}{7}=\frac{5}{7}$ Is $\overleftrightarrow{A N} \| \frac{\mathrm{GL}}{}$ Yes or 10
(3)

Slope $\overparen{K}=$
Slope $\stackrel{\mathrm{LM}}{ }=$

$$
\frac{2}{4}=\frac{1}{2}
$$

$$
\frac{3}{6}=\frac{1}{2}
$$

$1 s \overparen{K} \| \stackrel{\mathrm{LM}}{\mathrm{c}}$ Yes or No
(6)

Slope $\overleftrightarrow{\mathrm{SL}}=$
Slope $\overrightarrow{C A}=$

$$
\frac{-6}{2}=-3
$$

(9)

Is $\overrightarrow{S L} \| \overrightarrow{C A}$? Yes or No

Slope $\overrightarrow{M N}=$
Slope $\overrightarrow{\text { TX }}=$
$\frac{3}{4}=-\frac{3}{4}$
$\frac{7}{8}=\frac{7}{8}$
Is $\overrightarrow{\mathrm{MN}} \| \overleftrightarrow{\mathrm{TW}}$?
Yes or No

