1. Find change in a Line Segment: (Directed Line Segment LINE SEGMENTS
2. Multiply changes by change in y.
3. Directed Line Segments-Order Matters!)
original x and y values.
Given point
coordinates $A(-1,2)$ and $B(7,8)$, find the
$A B$ that pars of the point on directed the
Graph the point $A B$ in the ration line segment
$1: 3=1 / 4$
$\Delta x=x_{2}-x_{1}=7--1=8\left(\frac{1}{4}\right)=2$
$\Delta y=y_{2}-y_{1}=8-2=6\left(\frac{1}{4}\right)=\frac{6}{4}=1.5$
$A(-1,2)$
(2) $(1,35)$

Given points $V(2,-10)$ and $U(-4,2)$, find the
coordinates of the point on $U(-4,2)$, find the
VU that partitions VU in the directed line segment
Graph the point.
$1: 5=1 / 6$
$\Delta x=x_{2}-x_{1}=-4-2=-6\left(\frac{1}{6}\right)=-1$
$\Delta y=y_{2}-y_{1}=2--10=12\left(\frac{1}{6}\right)=-2$
$V(2,-10)$
$-1+2$
$(1,-8)$
(3) Given points $Q(2,-1)$ and $P(-8,-6)$, find the coordinates of the point on directed line segment QP that partitions QP in the ratio 2:3. Show work. Graph the point.

$$
2: 3=2 / 5
$$

$\Delta x=x_{2}-x_{1}=-8-2=-10(2 / 5)=-4$
$\Delta y=y_{2}-y_{1}=-6--1=-5(2 / 5)=-2$
$\begin{array}{r}Q(2,-1) \\ -4,-2 \\ \hline-2,-3\end{array}$

4) Given points $\mathrm{D}(3,-12)$ and $\mathrm{C}(-5,4)$, find the coordinates of the point on directed line segment DC that partitions DC in the ratio 3:5. Show work. Graph the point.
$3: 5=38$
$\Delta x=x_{2}-x_{1}=-5-3 \neq 8\left(\frac{3}{8}\right)=-3$
$\Delta y=y_{2}-y_{1}=4$
$\Delta y=y_{2}-y_{1}=4--12=16(3 / 8)=6$
$\mathrm{D}(3,-12)$
$\frac{-36}{0,6}$
(5) Given points $M(3,4)$ and $N(-2,-6)$, find the coordinates of the point on directed line segment MN that partitions MN in the ratio 4:1. Show work. Graph the point.
$4: 1=4 / 5$
$\Delta x=x_{2}-x_{1}=-2-3=-5\left(\frac{4}{5}\right)=-4$
$\Delta y=y_{2}-y_{1}=-6-4=-10\left(\frac{4}{5}\right)=-8$
M (3,4)
$\frac{-4-8}{-1,-4}$

(6) Given points $K(8,-5)$ and $J(-6,2)$, find the coordinates of the point on directed line segment KJ that partitions KJ in the ratio 4:3. Show work. Graph the point.
$4: 3=4 / 7$
$\Delta x=x_{2}-x_{1}=-6-8=-14(4 / 7)=-8$
$\Delta y=y_{2}-y_{1}=2--5=7(4 / 7)=4$
$K(8,-5)$
$\frac{-8,4}{0,1}$

