WRITING PERPENDICULAR LINE EQUATIONS
Perpendicular Lines have opposite recip Weal slope. The easiest formula to use is Point-slope $y-y_{1}=m\left(x-x_{1}\right)$ because it gives the slope m and a point on the line.
erections: For \#9-16, write and describe the perpendicular (\perp) slope. Then write the perpendicular inear equation that passes through the given point.
9) $y=-3 x+2$ and the perpendicular line equation passes through (15,7).

$$
\begin{aligned}
& m=\frac{-3}{H / 3} \\
& m_{\perp}=H 1
\end{aligned}
$$

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-7=\frac{1}{3}(x-15) \\
& y-7=\frac{1}{3} x-5 \quad y=\frac{1}{3} x+2
\end{aligned}
$$

(11) $y=4 x-6$ and the perpendicular line equation passes through $(18,-31)$.

$$
\begin{aligned}
& m=4 \\
& m_{\perp}=-1 / 4 \\
& y-y_{1}=m\left(x-x_{1}\right) \\
& y+31=-\frac{1}{4}(x-18) \\
& y+31=-\frac{1}{4} x+4.5 \quad y=\frac{-1}{4} x-26.5
\end{aligned}
$$

(13) $y=-\frac{3}{4} x+5$ and the perpendicular line equation passes through ($-21,-44$).

$$
\begin{aligned}
& m=-3 / 4 \\
& m_{1}=4 / 3 \\
& y-y_{1}=m\left(x-x_{1}\right) \\
& y+44=\frac{4}{3}(x+21) \\
& y+44=\frac{4}{3} x+28
\end{aligned}
$$

(10) $y=\frac{1}{4} x-3$ and the perpendicular line equation passes through ($6,-35$).

$$
\begin{aligned}
& m=1 / 4 \\
& m_{\perp}=-4
\end{aligned}
$$

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y+35=-4(x-6) \quad(y=-4 x-11 \\
& y+35=-4 x+24
\end{aligned}
$$

(12) $y=\frac{2}{5} x+4$ and the perpendicular line equation passes through ($10,-37$).

$$
\begin{aligned}
& m=2 / 5 \\
& m_{\perp}=-5 / 2 \\
& y-y_{1}=m\left(x-x_{1}\right) \\
& y+37=-\frac{5}{2}(x-10) \\
& y+37=-\frac{5}{2} x+25 \quad y=\frac{-3}{2} x-12
\end{aligned}
$$

(14) $y=\frac{4}{7} x-7$ and the perpendicular line equation passes through ($-24,53$).

$$
\begin{aligned}
& m=4 / 7 \\
& m_{\perp}=-7 / 4
\end{aligned}
$$

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

$$
y-53=\frac{-7}{4}(x+24)
$$

$$
y-53=\frac{-7}{4} x-42 \quad\left(y=\frac{-7}{4} x+1\right)
$$

(16) $y=3 x+8$ and the perpendictitar tine equation passes through $(-18,1)$.

$$
\begin{aligned}
& m=3 \\
& m_{\perp}=-1 / 3 \\
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-1=\frac{-1}{3}(x+18) \\
& y-1=\frac{-1}{3} x-6 \\
& y=\frac{-1}{3} x-5
\end{aligned}
$$

