\qquad
Date \qquad
Find the missing length indicated.
1)

2)

$$
\begin{array}{r}
\frac{4}{8}=\frac{5}{x} \\
4 x=40 \\
x=10
\end{array}
$$

$$
\begin{array}{r}
\frac{x}{28}=\frac{20}{16} \\
16 x=560 \\
x=35
\end{array}
$$

$$
\begin{aligned}
\frac{4}{6} & =\frac{x}{12} \\
6 x & =48 \\
x & =8
\end{aligned}
$$

4)

$$
\begin{aligned}
\frac{x}{15} & =\frac{20}{25} \\
25 x & =300 \\
x & =12
\end{aligned}
$$

In each triangle, M, N, and P are the midpoints of the sides. Name a segment parallel to the one given.
5)
 $\overline{M N \| K I}$
6)

Find the missing length indicated.
8) Find $X V$

$$
V X=2(R Q)
$$

$$
2(11)
$$

$$
=2 x
$$

7) Find $V X$

8) Find $K L$

$$
\begin{aligned}
L K & =\frac{1}{2}(J H) \\
& =\frac{1}{2}(20) \\
& =10
\end{aligned}
$$

$$
\begin{aligned}
V x= & 2(R \mathbb{Q}) \\
& 2(9) \\
= & 18
\end{aligned}
$$

Solve for \boldsymbol{x}.
11)

12)

Write the equation to find x. Then find the missing length.
13) Find $V X$

Equation:

14) Find $R P$

$2(S T)=J H$
Equation:

$$
\begin{gathered}
2(2 x-3)=3 x+1 \\
4 x-6=3 x+1 \\
-3 x \quad 3 x \\
\hline x-6=1 \\
\frac{+6+6}{x=7}
\end{gathered}
$$

$2(y X)=P R$
Equation: $2(2 x-13)=2 x-2$ $4 x-26=\frac{2 x-2}{2 x}$
$-2 x \quad 2 x-26=-2$
$2 x=24$
RP $22 x=1$
$\overline{A D}$ is an altitude of $\triangle B A C$. Name the three similar triangles.

Solving Right Triangles

Examples
1.
alt?

4.

7.

2.

$$
\frac{8}{x}=\frac{x}{18}
$$

$\sqrt{x^{2}}=\sqrt{44} \quad x=12$
5. leg?
$\frac{S 1}{L_{1}}=\frac{L_{1}}{\text { hyp }}$

8.

10.

$$
\begin{aligned}
& \frac{9}{x}=\frac{x}{25} \\
& \sqrt{x^{2}=225} \\
& x=15
\end{aligned}
$$

13.

$$
\begin{array}{r}
\frac{9}{12}=\frac{12}{x} \\
9 x=144 \\
x=16
\end{array}
$$

11.

14.

$$
15^{2}-9^{2}=\sqrt{44}
$$

$$
9 x=225
$$

6. leg?

9

$$
\begin{aligned}
& \frac{9}{x}=\frac{x}{25} \\
& \sqrt{x^{2}}=2 x=15 \\
& x=15
\end{aligned}
$$

9.

leg?

$$
\begin{aligned}
& \frac{36}{x}=\frac{x}{100} \\
& \sqrt{x^{2}=} \sqrt[3600]{x=60}
\end{aligned}
$$

12.

$$
\begin{aligned}
& \frac{8}{x}=\frac{x}{20} \\
& \sqrt{x^{2}}=\sqrt{160} \\
& x=+\sqrt{16 \sqrt{20}} \\
& x=4 \sqrt{10}
\end{aligned}
$$

$$
15 .
$$

$$
\begin{aligned}
& 60 \quad \begin{array}{l}
60^{2}-362 \\
-230 \\
36 \\
\frac{x}{60}
\end{array}=\frac{60}{3.6} \\
& 36 x= 3600 \\
& x=100^{\circ}
\end{aligned}
$$

SIMILAR TRIANGLE PROBLEM SOLVING
For N1-10, solve each involving similar triangles by labeling the given diagram and applying that Cormevonding. Sides of Similar Triangles are in Proportion. Show your processed
(1) A 5 foot tall person elicits a shadow of 6 feet at the same time that a lamppost casts an 18 foot shadow. What is the height of the lamppost?

$$
\frac{x}{18}=\frac{5}{6}
$$

$6 x=90$

$$
x=15
$$

Ans: The lamppost is \qquad 15 feet tall.

(2) A mirror is $\mathbf{1 3 2}$ inches from a flagpole. If your height is 70 inches and you are 24 inches from the mirror, then how tall is the flagpole?

$$
\frac{x}{132}=\frac{70}{24}
$$

$$
\begin{aligned}
24 x & =9240 \\
x & =385
\end{aligned}
$$

Ans: The flagpole is \qquad feet tall.

(3) A mirror is $\mathbf{3 5}$ feet from a model iron tower. If your eye is $\mathbf{6}$ feet above the ground and you are 10 feet from the mirror, then how tall is the tower?

$$
\begin{array}{r}
\frac{x}{35}=\frac{6}{10} \quad 10 x=210 \\
x=21
\end{array}
$$

Ans: The model iron tower is \qquad 21 feet tall.
(4) To estimate the width of a river, a surveyor places stakes on locations labeled A, B, C, D and E. If DE is 9 feet, DC is 12 feet and $C B$ is 48 feet, then what is the width across the river?

$$
\begin{array}{r}
\frac{x}{48}=\frac{9}{12} \quad 12 x=432 \\
x=36
\end{array}
$$

Ans: The width of the river is 36 feet.

(5) To estimate the width of a canyon, a park ranger places stakes on locations labeled A, B, C, D and E. If DE is 12 yards, CE is 20 yards and CB is 30 yards, then what is the width across the canyon?

$$
\begin{aligned}
\frac{x}{30}=\frac{12}{20} \quad 20 x & =360 \\
x & =18
\end{aligned}
$$

SIMILAR TRIANGLE PROBLEM SOLVING

For \#1-10, solve each involving similar triangle by labeling the given diagram sud applying that Corresponding Sides of Similar Triangles are in Droborilom. Show your process!
(0) A lady who in 66 Inches tall casa is shadow of 72 belsen. If she is 48 inches away from a light pole, then how tall in the light pole?

$$
\frac{x}{120}=\frac{64}{72}
$$

$$
\begin{aligned}
72 x & =7920 \\
x & =110
\end{aligned}
$$

Ans: The light pole is \square Inches tall.
(7) A 6 foot tall man elicits an 8 foot shadow. If the man in 64 feet away from the lighthouse, then how tall is the lighthouse"?

$$
\frac{6}{8}=\frac{x}{72}
$$

$$
\begin{array}{r}
8 x=432 \\
x=54
\end{array}
$$

Ans: The lighthouse is \qquad 54 feet tall.

(8) Two sunbathers lie on opposite ends of a 15 foot tall tiki statue. Their angles of elevation to the top of the id are complementary. If the right sunbather is 9 feet away from the tiki, then how far from the tiki is the left sunbather?

$$
\begin{array}{r}
\frac{x}{15}=\frac{15}{9} \quad 9 x=225 \\
x=25
\end{array}
$$

Ans: The left sunbather is \qquad 25 feet away from the tiki.

(9) Two surfers lie on opposite ends of a 60 foot tall coconut tree.

Their angles of elevation to the top of the tree are complementary. If the left surfer is 40 feet away from the tree, then how far from the tree is the right surfer?

$$
\begin{aligned}
\frac{40}{60}=\frac{60}{x} \quad 40 x & =3600 \\
x & =90
\end{aligned}
$$

Ans: The right surfer is 90 feet away from the tree.

(11) A $\mathbf{2 5}$ foot ladder is $\mathbf{1 5}$ feet away from a building. A brace extends from the point where the building meets the ground to the ladder. How long is the brace?

Ans: The brace is \qquad feet long.

15

