Unit 5 Study Guide \#2

Name \qquad S \qquad
Match the quadrilateral with the description of the diagonal.

C 1. parallelogram
B 2. rectangle

A 3. Rhombus
D 4. Square
A. perpendicular
b. congruent
e. bisect
d. congruent and perpendicular
$5 \& 6$, Write the equation of the line $y=3 x-4$, and goes through $(3,-4)$
5) the line is parallel
6) the line is perpendicular

$$
\begin{array}{ll}
m=\frac{3}{3} \\
m_{/ /}=3
\end{array} \quad \begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y+4=3(x-3) \\
& y+4=3 x-9 \\
& y=3 x-13
\end{aligned}
$$

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

7. Given the points $(-4,10)$ and $(-7,-4)$, find

$$
m=3
$$

$m_{\perp}=-1 / 3$.
$y+4=\frac{-1}{3}(x-3)$
$y+4=\frac{-1}{3} x+\frac{1}{y=\frac{1}{3} x-3}$
8. Given the points $(-3,-9)$ and $(-2,-6)$, find
a) the midpoint
b) the distance
a) the midpoint
b) the distance
$\left(\frac{4+-7}{2}, \frac{10+-4}{2}\right)$

$$
\begin{gathered}
=\sqrt{(-4--7)^{2}+(10--4)^{2}} \\
=\sqrt{205}
\end{gathered}
$$

$\left(\frac{-3+-2}{2}, \frac{-9+-6}{2}\right)$
$\left(\frac{-5}{2}, \frac{-15}{2}\right)$

$$
\begin{aligned}
=\sqrt{(-3-2)^{2}}+ & (-9--6)^{2} \\
& =\sqrt{10}
\end{aligned}
$$

For 9 \& 10, Given the points $A(-3,4)$ and $B(\sim 7,12)$, find the coordinates of the point P on the directed line segment $A B$ that partitions in the ratio of $\quad x_{2} y_{2}$
9) $1: 3=1 / 4$
$\Delta x=x_{2}-x_{1}=-7-3=-4\left(\frac{1}{4}\right)=-1$
$\Delta y=y_{2}-y_{1}=12-4=8\left(\frac{1}{4}\right)=2$

10) $3: 2=3 / 5$

$$
\begin{aligned}
& \Delta x=x_{2}-x_{1}=-7--3=-4\left(\frac{3}{5}\right)=-2.4 \\
& \Delta y=y_{2}-y_{1}=12-4=8\left(\frac{3}{5}\right)=4.8
\end{aligned}
$$

P(-3,4)
$-2.4,4.8$
$(-5.8,8.8)$

For $11 \& 12$, Given the center and the radius, determine if the given point lies on the circle.

$$
(x-h)^{2}+(y-k)^{2}=r^{2}
$$

$$
\begin{array}{lr}
\begin{array}{c}
h, k \\
\text { 11) Center: } \\
(4,1) \text { and radius }=8 \text {, point } T(-4,9)
\end{array} \\
\begin{array}{lr}
(-4-4)^{2}+(9-1)^{2}=8^{2} & \text { 12) Center: }(1,-2) \text { and } r=4 \text {, point } T(3.4,1.2) \\
128 \neq 64 \mathrm{NO} & (3.4-i)^{2}+(1.2--2)^{2}=16
\end{array}
\end{array}
$$

For $13 \& 14$, Find the length of the radius of the circle whose diameter has the given endpoints.
13) $(-4,1)$ and $(4,-5)$
$>$ Find midpoint: $\left(\frac{-4+4}{2}, \frac{1+-5}{2}\right)$

$$
(0,-2)
$$

> Take midpoint and one of endpoints and use distance formula.
14) $(-3,2)$ and $(1,-5)$
$>$ Find midpoint: $\left(\frac{-3+1}{2}, \frac{2+-5}{2}\right)$

$$
(-1,-1.5)
$$

$>$ Take midpoint and one of endpoints and use distance formula.

$$
\begin{aligned}
& (0,-2),(-4,1) \\
= & \sqrt{(0--4)^{2}+(-2-1)^{2}} \\
= & \sqrt{25}=5
\end{aligned}
$$

$15 \& 16$, Find the length of the diameter of the circle with the center at the given point and the given point that lies on the circle.

$$
\text { center }=(5,-3) \text { and point } \mathrm{T}(2,5)
$$

16) center $=(4,-3)$ and point $T(1,5)$

$$
\begin{aligned}
& r=\sqrt{(5-2)^{2}+(-3-5)^{2}} \\
& r=\sqrt{23} \\
& \text { Diameter }=2 \sqrt{7}^{3}
\end{aligned}
$$

$17 \& 18$, Find the standard form of the circle given the equations below. Identify the center and radius.

$$
\begin{array}{ll}
x^{2}+y^{2}+14 x-12 y+4=0 & \left.\begin{array}{l}
18) x^{2}+y^{2}+6 x-2 y+1=0 \\
2^{2}+14 x+49+4^{2}-12 y+36 \\
=4
\end{array}\right)+49+136 \\
(x+7)^{2}+(y-6)^{2}=81 & \left(x+3 x+9+y^{2}-2 y+1=-1+9+1\right. \\
(y-1)^{2}=9
\end{array}
$$

inter: $(-7,6) r=9$
Quadrilateral ABCD has vertices $\mathrm{A}(2,-1), \mathrm{B}(1,3)$, $C(6,5), D(7,1)$. Prove the Quadrilateral is a parallelogram.

$$
\left.\begin{array}{rl}
= & \left(\frac{2+6}{2}, \frac{-1+5}{2}\right)
\end{array} \quad A(2,-1), C(6,5)\right)
$$

Center: $-3,1, r=3$
20) Quadrilateral FGHJ has vertices $F(-4,-1), G(-2,-5)$, $H(4,-2), \mathrm{J}(2,2)$. Prove the parallelogram is a rectangle.

$$
\begin{aligned}
\mathrm{FH}=\sqrt{(-4-4)^{2}+(-1--2)^{2}} & F(-4,-1), H(4,-2) \\
& =\sqrt{65} \\
\mathrm{GJ}= & \sqrt{(-2-2)^{2}+(-5-2)^{2}} \\
& \quad G(-2,-5), J(2,2) \\
& =\sqrt{65}
\end{aligned}
$$

) Given the triangle below, $\mathrm{A}(-1,1), \mathrm{B}(1,4), \mathrm{C}(3,3)$

a) Find the lengths/distances of each side. Put all the work below.

$$
\begin{aligned}
& \mathrm{AB}=\sqrt{(-1-1)^{2}+(1-4)^{2}} \rightarrow \sqrt{(3} \approx 3.6 \\
& \mathrm{BC}=\sqrt{(1-3)^{2}+(4-73)^{2}} \rightarrow \sqrt{5} \approx 2.2 \\
& \mathrm{AC}=\sqrt{(-1-3)^{2}+(1-3)^{2}} \rightarrow 2 \sqrt{5} \approx 4.5
\end{aligned}
$$

b) Find the perimeter.

$$
\sqrt{13}+2 \sqrt{5}+\sqrt{5}=\sqrt{13}+3 \sqrt{5} \approx 103
$$

c) Find the area. $A=1 / 2$ bh

$$
A=\frac{1}{2}(\sqrt{5})(\sqrt{13})=\frac{\sqrt{4 r}}{2}
$$

