Unit 5 Study Guide

1. What information is needed to show that a parallelogram is a rectangle?
diagonals are congment
2. What information is needed to show that a parallelogram is a square?
diagonals congmentr perpendicular
3. Find the midpoint of the line segment containing

$$
\begin{aligned}
& \mathrm{A}(5,-8) \text { and } \mathrm{B}(-7,-4) \\
& \begin{array}{ll}
x_{1} u_{1} & \left(-\frac{2}{2}, \frac{-12}{2}\right) \\
\text { Midpoint of } A B:\left(\frac{-7+5}{2}, \frac{-4+-8}{2}\right) & (-1,-6)
\end{array}
\end{aligned}
$$

Name \qquad S \qquad
2. What information is needed to prove a quadrilateral is a parallelogram?
diagonals bisect
4. Parallel lines have same slope and perpendicular lines have opposite recipu)eal slopes.
6. If a line segment needs to be portioned by a $3: 4$ ratio, what is the fraction that would be used to find the point?

7. Identify the slope of each line and then determine if the lines are parallel, perpendicular, or neither.
a)

b)
$y=\begin{aligned} & 1 / 2 x+5 \\ & y=1 / 2 x-9\end{aligned}$ parallel
c)
$y=3 x+1$
$y=-3 x-2$$\quad$ Neither

Write the equation of the lines below in slope-intercept form: $y=m x+b$.
8. Through $(-4,5)$ and parallel to $y=-\frac{3}{2} x-5$.
9. Through $(\mathbf{4}, \mathbf{1})$ and perpendicular to $\boldsymbol{y}=-\mathbf{2 x}-\mathbf{2}$

$$
\begin{aligned}
& m=-3 / 2 \\
& m_{/ 1}=-3 / 2
\end{aligned}
$$

$$
\begin{aligned}
& m=-2 \\
& m_{\perp}=-1 / 2
\end{aligned}
$$

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-5=\frac{-3}{2}(x+4) \quad y=\frac{3}{2} x-1 \\
& y-5=-\frac{3}{2} x-6
\end{aligned}
$$

10. Use the graph below of the two intersecting lines to explain how you can use the slope of each line to prove that they are perpendicular. \uparrow
 opposite
 reciprocal

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) \\
y-1 & =-\frac{1}{2}(x-4) \\
y-1 & =-\frac{1}{2} x+2 \\
y & =\frac{1}{2} x+3
\end{aligned}
$$

11. Use the graph below of the non-intersecting lines to explain how you can use the slope of each line to prove that they are parallel.

Slope of $\overline{A C}:-5 / 6$
Slope of $\overline{L S}$: 6/5.
Slopes are opposite reciprocal, so they are perpendicular lines

Slope of $\overline{C D}: 1 / 3$
Slopes are the same, so they are parallel lines
 what are the coordinates of the point on the directed line segment $\overline{P Q}$ that partitions $\overline{P Q}$ into the ratio
$3: 2=3 / 5$

$$
\begin{aligned}
& \Delta x=x_{2}-x_{1}=-9-2=-11\left(\frac{3}{5}\right)=-6.6 \\
& \Delta y=y_{2}-y_{1}=-6-1--5(2)
\end{aligned}
$$

$$
\Delta y=y_{2}-y_{1}=-6-1=-5\left(\frac{3}{5}\right)=-3
$$

$\mathrm{P}(2,-1)$

$$
\pm-6.6,-3 \quad(-4.6,-4)
$$

14. Which point is on a circle with a center of $(3,-9)$ and a radius of 5? (Hint: Use $\left.(x-h)^{2}+(y-k)^{2}=r^{2}\right)$
A. $(-6,5) \quad(6-3)^{2}+(5--9)^{2} \stackrel{?}{=} 5^{2}$
15. $(-1,6) \quad(-1-3)^{2}+(6--9)^{2} \frac{?}{=} 5^{2}$
C. $(1,6) \quad(1-3)^{2}+(6-9)^{2}=5^{2}$
(D.) $(6,-5) \quad(6-3)^{2}+(-5-9)^{2} 3^{2} 5^{2}$
16. Identify the center and radius of the circle whose equation is given below.

$$
(x+10)^{2}+(y-7)^{2}=9
$$

Center: $(-10,7)$ radius $=\sqrt{9}=3$
18. Use the information provided to write the standard form of a circle. Then idenify the center and radius length.
13. Given the graph below, find the coordinates of $\overline{B A}$ if the ratio AD 1:3.

$$
1: 3=1 / 4
$$

$$
\Delta x=x_{2}-x_{1}=1--3=4\left(\frac{1}{4}\right)=1
$$

$$
\Delta y=y_{2}-y_{1}=4-2=2\left(\frac{1}{4}\right)=
$$

$$
\begin{array}{r}
\begin{array}{r}
B(-3,2) \\
+1, .5
\end{array} \\
-2,2.5
\end{array}
$$

15. What is the equation of the circle given the Center: $(4,8)$, diameter $=11$

$$
\frac{\text { diameter }}{2}=\mathrm{rad}
$$

Equation: $(x-4)^{2}+(y-8)^{2}=\underline{5.5}$

$$
(x-4)^{2}+(y-8)^{2}=30.25
$$

17. Given graph below, identify the center, radius and write the equation of the circle.

Center: $(-4,3)$ radius $=6$
Equation: $(x+4)^{2}+(y-3)^{2}=6^{2} \quad(x+4)^{2}+(y-3)^{2}=36$
19. What is the length of the radius of the circle whose diameter has endpoints of $(-3,2)$ and $(1,-4)$

$$
x_{1} u_{1} \quad x_{2} u_{2}
$$

Step 1) Find midpoint: $\left(\frac{-3+1}{2}, \frac{2+-4}{2}\right) \quad(-1,-1)$

$$
\begin{aligned}
& x^{2}-20 x+100+y^{2}+2 y+1=-76 \\
& (x-10)^{2}+(y+1)^{2}=25
\end{aligned}
$$

$=10$

Center: $(10,-1)$ radius $=5$
Equation: $(x-10)^{2}+(y+1)^{2}=5^{2}$

Step 2) Take midpoint and one of endpoints and use distance formula.

$$
\begin{aligned}
& =\sqrt{(-3--1)^{2}+(2-1)^{2}} \\
& =\sqrt{(-2)^{2}+(3)^{2}} \\
& =\sqrt{(4)+(9)}=\sqrt{13} \\
& r=\sqrt{13} \text { or } \approx 3.61
\end{aligned}
$$

20. Prove that quadrilateral ABCD shown below is quadrilateral by showing the diagonals bisect each other at $(1,0)$.

Midpoint of $A C:\left(\frac{-1+3}{2}, \frac{4+-4}{2}\right)=\left(\frac{2}{2}, \frac{0}{2}\right)$
$(1,0) \downarrow$
Midpoint of $D B:\left(\frac{-1+3}{2}, \frac{-2+2}{2}\right) \quad\left(\frac{2}{21} \frac{0}{2}\right)$
$(1,0) \quad \downarrow$
22. Find the area and perimeter of the following triangle. Simplest form required. Reminder: Draw altitude to find height.

$$
\begin{aligned}
A C & =\sqrt{\left.(7-7)^{2}+(-7) 6\right)^{2}} \\
& =\sqrt{(-14)^{2}+(-13)^{2}} \\
& =\sqrt{(190+(169)}=\sqrt{365} \approx 19.1 \\
A B & =9 \text { un } 1+
\end{aligned}
$$

$$
\begin{aligned}
B C & =\sqrt{(2-7)^{2}+(-9-6 \sqrt{3}} \\
& =\sqrt{(-5)^{2}+(-13)^{2}} \\
& =\sqrt{(25)+(169)}=\sqrt{194} \approx 13.9
\end{aligned}
$$

Area: $1 A=1 / 2 b \mathrm{bh})=(1 / 2)(a)(13)=58.5 \mathrm{units}^{2}$
Peripneter (Add all sides) $=$ \qquad

$$
9+19.1+13.9=42 \text { or }
$$

21. Prove that quadrilateral $A B C D$ shown below is a rectangle by showing the diagonals are congruent.

$$
\begin{aligned}
\mathrm{AC}: & =\sqrt{(-2-3)^{2}+(3-2)^{2}} \\
& =\sqrt{(-5)^{2}+(5)^{2}} \\
& =\sqrt{(25)+(25)}=\sqrt{50}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{BD}:= & \sqrt{(-3-4)^{2}+(0-1)^{2}} \\
& =\sqrt{(-7)^{2}+(-1)^{2}} \\
& =\sqrt{(49)+(1)}=\sqrt{50}
\end{aligned}
$$

23. Find the area and perimeter of the following parallelogram. Simplest form required. Reminder: Draw altitude to find height.

$$
A B=13 \text { units }
$$

$$
\begin{aligned}
B C & =\sqrt{(6-4)^{2}+(5-2)^{2}} \\
& =\sqrt{(2)^{2}+(7)^{2}} \\
& =\sqrt{(4)+(49)}=\sqrt{53} \approx 7.3
\end{aligned}
$$

Area: $(A=b h)=(7)(13)=191$.

$$
\text { Perimeter }(\text { Add all sides })=1
$$

$$
\begin{aligned}
& \sqrt{53}+\sqrt{53}+13+13=26+2 \sqrt{53} \\
& \approx 40.6
\end{aligned}
$$

