Transformations with Matrices

Points on a coordinate plane can be represented by matrices. The ordered pair (x, y) can be represented by the column matrix

Likewise, polygons can be represented by palcing all of the column matrices of the coordinates of the vertices into one matrix called a \qquad matrix.

Triangle ABC with vertices $\mathrm{A}(3,2), \mathrm{B}(4,-2)$, and $\mathrm{C}(2,-1)$ can be represented by the following vertex matrix.
$\begin{array}{ccc}A & B & C \\ \\ \triangle \mathrm{ABC}=\left[\begin{array}{lll}{[} & & \end{array}\right]\end{array}$

Matrices can be used to perform transformations. \qquad are functions tht map points of a \qquad onto its \qquad . If the image and preimage are congruent figures, the transformation is an \qquad _.

Translations:

A \qquad ocurrs when a figure is moved from one location to another without changing its size, shape, or orientation. You can ued matrix addition and a translation matrix to find the coordinates of a translated figure.

Example: Find the coordinates of the vertices of the image of $\Delta \mathrm{ABC}$ with (3,2), $\mathrm{B}(4,-2)$, and $\mathrm{C}(2,-1)$, if it is moved 3 units left, and 1 unit down. Be sure to write out the translation matrix. Then graph $\triangle A B C$ and its image $\triangle A^{\prime} B^{\prime} C^{\prime}$.

Dilations:

When a geometric figure is enlarged or reduced, the transformation is called a \qquad . You can use scalar multiplication to perform dilations.

Example: Find the coordinates of the vertices of the image of $\triangle A B C$ with (3,2), $B(4,-2)$, and $C(2,-1)$, if it has be reduced by a factor of $1 / 2$. Be sure to write out the dilation matrix. Then graph $\triangle A B C$ and its image $\triangle A^{\prime} B^{\prime} C^{\prime}$

Reflections:

A \qquad occurs when every point of a figure is mapped to a corresponding image across a line of symmetry using a reflection matrix.

Reflections				
For a reflection line over the	x-axis	y-axis	Line $y=x$	Line $y=-x$
Multiply the vertex matrix on the left by:				
Quick way to check	$(x,-y)$	$(-x, y)$	(y, x)	$(y,-x)$

Example: Find the coordinates of the vertices of the image $\triangle A B C$ with $(3,2), B(4,-2)$, and $C(2,-1)$. Be sure to write out the reflection matrix. Then graph $\triangle A B C$ and its image $\Delta A^{\prime} B^{\prime} C$.

a) x-axis

c) $y=x$

d) $y=-x$

Rotations:

A \qquad occurs when a figure is moved around a center point, usually the origin. To determine the vertices of a figure's image by rotation, multiply its vertex matrix by a rotation matrix.

Rotations			
For a counterclockwise (CCW) rotation about the origin of	90°	180°	270°
Multiply the vertex matrix on the left by:			
Quick way to check	$(-y, x)$	$(-x,-y)$	$(y,-x)$
Same as clockwise (CW) rotation about the origin of	270°	Doesn't change	90°

Example: Find the coordinates of the vertices of the image $\triangle A B C$ with $(3,2), B(4,-2)$, and $C(2,-1)$. Be sure to write out the rotation matrix. Then graph $\triangle A B C$ and its image $\triangle A^{\prime} B^{\prime} C$.
a) $90^{\circ} \mathrm{CCW}$
b) $180^{\circ} \mathrm{CCW}$

c) $270^{\circ} \mathrm{CCW}$

