# Transformations with Matrices

Points on a coordinate plane can be represented by matrices. The ordered pair (x,y) can be represented by the column matrix

Likewise, polygons can be represented by palcing all of the column matrices of the coordinates of the vertices into one matrix called a \_\_\_\_\_\_ matrix.

Triangle ABC with vertices A(3,2), B(4,-2), and C(2,-1) can be represented by the following vertex matrix.  $A \quad B \quad C$  $\Delta ABC = \begin{bmatrix} \\ \end{bmatrix}$ 

Matrices can be used to perform transformations. \_\_\_\_\_\_ are functions tht map points of a \_\_\_\_\_\_ onto its \_\_\_\_\_\_. If the image and preimage are congruent figures, the transformation is an \_\_\_\_\_\_.

#### Translations:

A \_\_\_\_\_\_ ocurrs when a figure is moved from one location to another without changing its size, shape, or orientation. You can ued matrix addition and a translation matrix to find the coordinates of a translated figure.

Example: Find the coordinates of the vertices of the image of  $\triangle$ ABC with (3,2), B(4,-2), and C(2,-1), if it is moved 3 units left, and 1 unit down. Be sure to write out the translation matrix. Then graph  $\triangle$ ABC and its image  $\triangle$ A'B'C'.



#### **Dilations:**

When a geometric figure is enlarged or reduced, the transformation is called a \_\_\_\_\_\_. You can use scalar multiplication to perform dilations.

Example: Find the coordinates of the vertices of the image of  $\triangle$ ABC with (3,2), B(4,-2), and C(2,-1), if it has be reduced by a factor of  $\frac{1}{2}$ . Be sure to write out the dilation matrix. Then graph  $\triangle$ ABC and its image  $\triangle$ A'B'C'



## **Reflections:**

A \_\_\_\_\_\_ occurs when every point of a figure is mapped to a corresponding image across a line of symmetry using a reflection matrix.

| Reflections                                   |        |         |              |             |  |
|-----------------------------------------------|--------|---------|--------------|-------------|--|
| For a reflection line over the                | x-axis | y-axis  | Line $y = x$ | Line y = -x |  |
| Multiply the vertex<br>matrix on the left by: |        |         |              |             |  |
| Quick way to check                            | (x,-y) | (-x, y) | (y,x)        | (y, -x)     |  |

Example: Find the coordinates of the vertices of the image  $\triangle$ ABC with (3,2), B(4,-2), and C(2,-1). Be sure to write out the reflection matrix. Then graph  $\triangle$ ABC and its image  $\triangle$ A'B'C.

a) x-axis

b) y-axis





c) y = x







## **Rotations:**

A \_\_\_\_\_\_ occurs when a figure is moved around a center point, usually the origin. To determine the vertices of a figure's image by rotation, multiply its vertex matrix by a rotation matrix.

| Rotations                                                 |         |                |         |  |  |
|-----------------------------------------------------------|---------|----------------|---------|--|--|
| For a counterclockwise (CCW) rotation about the origin of | 90°     | 180°           | 270°    |  |  |
| Multiply the vertex matrix on the left by:                |         |                |         |  |  |
| Quick way to check                                        | (-y, x) | (-x, -y)       | (y, -x) |  |  |
| Same as clockwise (CW) rotation<br>about the origin of    | 270°    | Doesn't change | 90°     |  |  |

Example: Find the coordinates of the vertices of the image  $\triangle$ ABC with (3,2), B(4,-2), and C(2,-1). Be sure to write out the rotation matrix. Then graph  $\triangle$ ABC and its image  $\triangle$ A'B'C.

a) **90° CCW** 

b) **180° CCW** 





c) 270° CCW

