

Angles in Standard Position	An angle on the coordinate plane is in \qquad \qquad when the vertex is on the origin and one ray lies on the positive x-axis. The ray on the x-axis is called the \qquad . $>$ The other ray is called the \qquad . Counterclockwise rotations result in \qquad angle measures. Clockwise rotations result in \qquad angle measures. $>$ One full revolution $=$ \qquad .		
Drawing Angles	Directions: Sketch an angle with the given measure in standard position.		
	1. 25°	2. 142°	3.210°
	4. 320°	4. -160°	6. 430°
Radians Vs. Degrees	A \qquad is the measurement of an angle in standard position whose arc length, s , is equal to its radius, r . There are approximately \qquad radians in every circle. Recall that the circumference of a circle is $2 \pi r$, therefore: $\begin{gathered} \mathrm{S}=\mathrm{r} \theta \\ 2 \pi r=\mathrm{r} \theta \\ 2 \pi=\theta \end{gathered}$ We all know that every circle has 360 degrees so $360^{\circ}=2 \pi$.		
	Converting Degree	\rightarrow Radians \quad Conv	rting Radians \rightarrow Degrees
Degrees \rightarrow Radians	Directions: Convert each measure to radians.		
	1. 30°	2. $150{ }^{\circ}$	3. -220°

Radians \rightarrow Degrees	Directions: Convert each measure to degrees.
	4. $\frac{4 \pi}{3}$ $5 . \frac{7 \pi}{4}$ $6 . \frac{-5 \pi}{36}$
Coterminal Angles	Angles in standard position with the same terminal side are \qquad angles.
	Directions: Give one negative and one positive angle that are coterminal to the given angles.
	1.110° $2 .-30^{\circ}$ $\mathrm{P}:$ $\mathrm{N}:$ $\mathrm{P}:$ $\mathrm{N}:$
	$3 .-250^{\circ}$ 4.560° $\mathrm{P}:$ $\mathrm{P}:$ $\mathrm{N}:$ $\mathrm{N}:$
	$5 . \frac{5 \pi}{3}$ $6 .-\frac{\pi}{12}$ $\mathrm{P}:$ $\mathrm{P}:$ $\mathrm{N}:$ $\mathrm{N}:$
Reference Angles	For an angle θ in standard form, the \qquad angle is the positive acute angle form by the terminal side and the x -axis. All reference angles are positive, acute angles measuring between 0° and 90°. $>$ Finding Reference Angles for Angles greater than 360° or less than 360° 1. Find a positive angle less than 360° or 2π that is conterminal with the given angle. 2. Draw θ in standard position. 3. Use the drawing to find the reference angle for the given angle When in radians, if the denominator is 1. 3 the reference angle is \qquad 2. 4 the reference angle is \qquad 3. 6 the reference angle is \qquad .

