For \#1-20, Solve the YOUR TURN Problem that is modeled after the Example.

(3) A square pyramid is packaged inside a box. The space inside the box around the pyramid is then filled with protective foam. About how many cubic inches of foam is needed to fill the space around the pyramid?

$$
5^{-3}-\left(\frac{1}{3} \cdot 5 \cdot 5^{2}\right)
$$

$$
\approx 83.33 \mathrm{in}^{3}
$$

(4) Density is mass divided by volume. Find the density of an aluminum block with a mass of 35 grams and dimensions 2 cm by 7 cm by 1 cm .

$$
D=\frac{m}{v}=\frac{35 \mathrm{grams}}{2.7 \cdot 1 \mathrm{~cm}^{3}}=2.5 \mathrm{gram} \frac{\mathrm{~cm}^{3}}{}
$$

(5) The formula for the volume of a cylinder is $V=B h=\pi r^{2} h$. Find the volume of the cylinder below as an exact and estimated answer.

(1) The formula for the volume of a rectangular prism is $V=B h$. Find the volume of the prism below.

$$
(21)(13)(5)
$$

$$
1365 \mathrm{in}^{3}
$$

(2) The formula for the volume of a pyramid is $V=1 / 3 B h$. Find the volume of the pyramid below.

(3) A square pyramid is packaged inside a box. The space inside the box around the pyramid is then filled with protective foam. About how many cubic inches of foam is needed to fill the space around the pyramid?

$$
\begin{gathered}
9^{3}-\left(\frac{1}{3} \cdot 9 \cdot 9^{2}\right) \\
486 \mathrm{in}^{3}
\end{gathered}
$$

(b)
The formula for the volume of a cone is $\hat{x}=13 \mathrm{abt}=15 \mathrm{sec}$. . Find the volume of the cone below as an exact and estimated answer.

The formula for the volume of sphere is $V=4 / s \pi r^{3}$. Find the volume of the sphere below as an exact and estimated answer.

The formula for the volume of a pram $V=1 / 3 \mathrm{Bh}$. A square pyramid with height 10 cm has a volume of $160 / 3 \mathrm{~cm}^{3}$. What should be the side length of the square py ned?

$$
\frac{160}{3}=\frac{1}{3} 5^{2} \cdot 10
$$

$$
\begin{aligned}
& \frac{160}{3}=\frac{1}{3} s^{2} \cdot 10 \\
& \frac{160}{3}=\frac{10}{3} s^{2} \\
& \sqrt{16} s^{2} s s=4
\end{aligned}
$$

(9) The formula for the volume of acne is $V=1 / 3 B h=1 / 3 \pi r^{2} h$. A cone with height 10 cm has a volume of $250 \pi / 3 \mathrm{~cm}^{3}$. What should be the radius of the cone?

$$
\begin{aligned}
& \text { radius of the cone? } \\
& \frac{250 \pi}{3}=\frac{1}{3} \pi \cdot r^{2} \cdot 10 \\
& \frac{250 \pi}{3}=10 \frac{1}{3} r^{2} \sqrt{r^{2}=1 r \frac{25}{3}=5}
\end{aligned}
$$

(10) The formula for the volume of a cylinder is . $4.3 h=\pi r^{2} h$. A cylinder with height 10 cm has a. volume of $90 \pi \mathrm{~cm}^{3}$. What should be the radius

$$
\begin{aligned}
& \text { of the cylinder? } \\
& 90 \pi=\pi \cdot r^{2} \cdot 10 \\
& 90 \pi=10 \pi 1^{2} \\
& 9=1^{2}(r=3
\end{aligned}
$$

(11) The formula for the volume of a sphere is
$V=1 / 3 \pi r^{b}$. A sphere has a volume of $32 \pi / 3 \mathrm{~cm}^{3}$.
What should be the radius of the sphere?

$$
\begin{gathered}
\frac{324}{5}=\frac{4}{3} \pi r^{3} \\
8-r 3
\end{gathered}
$$

(6) The formula for the volume of a come is
$V=1 / 31 / h=1 / m f^{c h} h$. Find the volume of the cone: below as an exact and estimated answer

(7) The formula for the volume of a sphere is $V=1 / 8 \pi r$. Find the volume of the sphere below as an exact and estimated answer.

(8)
$V=1 / 3 B h$. A square pyramid witt height 2050 m has a volume of $1620 / 3 \mathrm{~cm}$. What should te the side length of the square pyramid?

$$
\begin{align*}
& \frac{1620}{3}=\frac{1}{3} \cdot s^{2} \cdot 20 \\
& \frac{1620}{3}=\frac{20}{3} s^{2} \tag{9}
\end{align*}
$$

The formula for the volume of cone is $V=1 / 3 B h=1 / 3 \pi r^{2} h$ A cone with height $2 D \mathrm{~cm}$ has a volume of $980 \mathrm{\pi} / 3 \mathrm{~cm}$. What shovice be the radius of the cone?

(10) $=B h=\pi r^{2} h$. A cylinder with height 20 cm has a volume of $1280 \pi \mathrm{~cm}^{3}$, What shovic is e the radius of the cylinder?

$$
\begin{align*}
& 1280 \pi=\pi \cdot r^{2}-20 \\
& 12807=20 r^{2} \\
& 64=r^{2} \quad y=8 \tag{11}
\end{align*}
$$

The formula for the volume of it eminem

 $V=4 / 3 \pi r^{6}$. A sphere has a volume of $500 \pi / 3 \mathrm{~cm}^{3}$. What should be fie nudiussi the sphere?(12) A globe with a diameter of 12 cm is wrapped in a
cube with the same dimension as hesper
diameter. Foam is to cover the sphere in the box to
prevent it from beng damaged. What should be
the volume of the form
(17) Cylinders A and B are shown below. Based on Cavalier's Principle, what should te the volume of each cylinder?
A:

β :

$$
\begin{aligned}
& V=\pi \cdot 5^{2} \cdot 12 \text { cylinder A blinder B } \\
& 200 \pi \mathrm{~m}^{3}=942.48 \mathrm{~m}^{3} \\
& \text { Cones A and B are shown below Based on }
\end{aligned}
$$ Cavalier's Principle, what should be the volume of each cone?

$$
V=\frac{1}{3} \cdot \pi r^{2} h
$$

A:

$$
V=\frac{1}{3} \cdot \pi \cdot 5^{2} \cdot 12
$$

$$
v=100 \pi m^{3}
$$

$$
=314.16 \mathrm{~m}^{3}
$$

B:

$$
\begin{aligned}
V & =\frac{1}{3} \cdot \pi \cdot 5^{2} \cdot 12 \\
V & =100 \pi \\
& =314.16 \mathrm{~m}^{3}
\end{aligned}
$$

(17)

Cylinders Λ and 11 are shown below. Based on Cavalieri's Principle, what should be the volume of each cylinder'?

$$
\begin{aligned}
& V=\frac{1}{3} \cdot \pi r^{2} h \\
& \left(\frac{1}{3}\right)(\pi)(7)^{2}(24)^{2} \\
& 392 \pi=1231.50 \mathrm{in}^{3}
\end{aligned}
$$

